Reconstruct the unknown source on the right hand side of time fractional diffusion equation with Caputo-Hadamard derivative

Authors

https://doi.org/10.61383/ejam.20242263

Keywords:

Inverse source problem, parabolic equation, regularization method, error estimate

Abstract

The Caputo-Hadamard derivative was used to investigate the problem of functional recovery in this study. This problem is ill-posed, we propose a novel Quasi-reversibility for reconstructing the sought function and show that the regularization solution depends on space. After that, the convergence rates are established under a priori and posterior choice rules of regularization parameters, respectively.

References

C Li, Z Li, and Z Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo–Hadamard fractional partial differential equation, J. Scientif. Comput. 85 (2020), no. 2, 1–27. DOI: https://doi.org/10.1007/s10915-020-01353-3

M Gohar, C Li, and Z Li, Finite difference methods for Caputo–Hadamard fractional differential equations, Mediterr. J. Math. 17 (2020), no. 6, 1–26. DOI: https://doi.org/10.1007/s00009-020-01605-4

A A Kilbas, H M Srivastava, and J J Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. DOI: https://doi.org/10.3182/20060719-3-PT-4902.00008

R C Koeller, Applications of fractional calculus to the theory of viscoelasticity, Trans. Asme J. Appl. Mec. 51 (1984), no. 2, 299–307. DOI: https://doi.org/10.1115/1.3167616

C Li and F Zeng, Numerical methods for fractional calculus, Vol. 24, CRC Press, 2015. DOI: https://doi.org/10.1201/b18503

K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.

L Oparnica, Generalized fractional calculus with applications in mechanics, Matematicki vesnik 54 (2002), no. 3-4, 151–158.

Truong T N, Classification of blow-up and global existence of solutions to a system of Petrovsky equations, Electronic Journal of Applied Mathematics, 1(2), 29-59. DOI: https://doi.org/10.61383/ejam.20231231

Thi T X D and Thi T H V, Recovering solution of the Reverse nonlinear time Fractional diffusion equations with fluctuations data, Electronic Journal of Applied Mathematics, 1(2), (2023) 60-70. DOI: https://doi.org/10.61383/ejam.20231237

Pandir Y and Yasmin, H Optical soliton solutions of the generalized sine-Gordon equation, Electronic Journal of Applied Mathematics, 1(2), 71-86, (2023). DOI: https://doi.org/10.61383/ejam.20231239

Pandir Y and Ekin A, New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method, Electron. J. Appl. Math, 1, 101-113, (2023). DOI: https://doi.org/10.61383/ejam.20231130

I Podlubny, Fractional differential equations, Elsevier, 1999.

Yang F, Cao Y, and Li X X, Two regularization methods for identifying the source term of Caputo–Hadamard time fractional diffusion equation, Mathematical Methods in the Applied Sciences, 46(15), 16170-16202, (2023). DOI: https://doi.org/10.1002/mma.9444

J Hadamard, Essai sur l’´etude des fonctions, donn´ees par leur d´eveloppement de Taylor, Gauthier-Villars, 1892.

F Jarad, T Abdeljawad, and D Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equat. (2012), no. 1, 1–8. DOI: https://doi.org/10.1186/1687-1847-2012-142

M Gohar, C Li, and C Yin, On Caputo–Hadamard fractional differential equations, Int. J. Comput. Math. 97 (2020), no. 7, 1459–1483. DOI: https://doi.org/10.1080/00207160.2019.1626012

A Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Applied Mathematical Sciences (AMS, volume 120).

Hu B, Xie S, and Wang Z, Determination of a spacewise-dependent heat source by a logarithmic-type regularization method, Applicable Analysis, 102(14), (2023) 3986-4003. DOI: https://doi.org/10.1080/00036811.2022.2102490

Wei T and Wang J, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation Applied Numerical Mathematics, 78, 95-111, (2014). DOI: https://doi.org/10.1016/j.apnum.2013.12.002

Prilepko A I and Tkachenko D S, Inverse problem for a parabolic equation with integral overdetermination, J Inverse Ill- Posed Probl. 2003;11:191–218. DOI: https://doi.org/10.1515/156939403766493546

Choulli M, Yamamoto M, Conditional stability in determining a heat source, J Inverse Ill-Posed Probl.2004;12:233–243. DOI: https://doi.org/10.1515/1569394042215856

Johansson T, Lesnic D, Determination of a spacewise dependent heat source. J Comput Appl Math.2007; 209(1) :66–80. DOI: https://doi.org/10.1016/j.cam.2006.10.026

Wang Z, Ruan Z, Huang H, Determination of an unknown time-dependent heat source from A nonlocal measurement

by finite difference method. Acta Math Appl Sin, English Ser. 2020; 36(1) :151–165. DOI: https://doi.org/10.1007/s10255-020-0918-3

Ma YK, Prakash P, Deiveegan A, Generalized Tikhonov methods for an inverse source problem of the time fractional diffusion equation, Chaos Solitons Fractals. 2018; 108 :39–48. DOI: https://doi.org/10.1016/j.chaos.2018.01.003

Xiong X, Xue X, A fractional Tikhonov regularization method for identifying a space-dependent source in the time fractional diffusion equation, Appl Math Comput. 2019; 349 :292–303. DOI: https://doi.org/10.1016/j.amc.2018.12.063

Wang J G and Wei T, Quasi-reversibility method to identify a space-dependent source for the time fractional diffusion equation, Applied Mathematical Modelling, 39(20), (2015), 6139-6149. DOI: https://doi.org/10.1016/j.apm.2015.01.019

Wang Z, Qiu S and Yu S, Exponential Tikhonov regularization method for solving an inverse source problem of time fractional diffusion equations. J Comput Math. doi:10.4208/jcm.2107-m2020-0133. DOI: https://doi.org/10.4208/jcm.2107-m2020-0133

Downloads

Published

2024 Jun 15

How to Cite

[1]
N. N. Hung, D. H. Quoc Nam, and D. L. Le, “Reconstruct the unknown source on the right hand side of time fractional diffusion equation with Caputo-Hadamard derivative”, Electron. J. Appl. Math., vol. 2, no. 2, pp. 22–31, Jun. 2024.

Issue

Section

Research Article
Received 2023 Dec 04
Accepted 2024 Jun 07
Published 2024 Jun 15

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.