Reconstruct the unknown source on the right hand side of time fractional diffusion equation with Caputo-Hadamard derivative
Keywords:
Inverse source problem, parabolic equation, regularization method, error estimateAbstract
The Caputo-Hadamard derivative was used to investigate the problem of functional recovery in this study. This problem is ill-posed, we propose a novel Quasi-reversibility for reconstructing the sought function and show that the regularization solution depends on space. After that, the convergence rates are established under a priori and posterior choice rules of regularization parameters, respectively.References
C Li, Z Li, and Z Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo–Hadamard fractional partial differential equation, J. Scientif. Comput. 85 (2020), no. 2, 1–27. DOI: https://doi.org/10.1007/s10915-020-01353-3
M Gohar, C Li, and Z Li, Finite difference methods for Caputo–Hadamard fractional differential equations, Mediterr. J. Math. 17 (2020), no. 6, 1–26. DOI: https://doi.org/10.1007/s00009-020-01605-4
A A Kilbas, H M Srivastava, and J J Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. DOI: https://doi.org/10.3182/20060719-3-PT-4902.00008
R C Koeller, Applications of fractional calculus to the theory of viscoelasticity, Trans. Asme J. Appl. Mec. 51 (1984), no. 2, 299–307. DOI: https://doi.org/10.1115/1.3167616
C Li and F Zeng, Numerical methods for fractional calculus, Vol. 24, CRC Press, 2015. DOI: https://doi.org/10.1201/b18503
K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
L Oparnica, Generalized fractional calculus with applications in mechanics, Matematicki vesnik 54 (2002), no. 3-4, 151–158.
Truong T N, Classification of blow-up and global existence of solutions to a system of Petrovsky equations, Electronic Journal of Applied Mathematics, 1(2), 29-59. DOI: https://doi.org/10.61383/ejam.20231231
Thi T X D and Thi T H V, Recovering solution of the Reverse nonlinear time Fractional diffusion equations with fluctuations data, Electronic Journal of Applied Mathematics, 1(2), (2023) 60-70. DOI: https://doi.org/10.61383/ejam.20231237
Pandir Y and Yasmin, H Optical soliton solutions of the generalized sine-Gordon equation, Electronic Journal of Applied Mathematics, 1(2), 71-86, (2023). DOI: https://doi.org/10.61383/ejam.20231239
Pandir Y and Ekin A, New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method, Electron. J. Appl. Math, 1, 101-113, (2023). DOI: https://doi.org/10.61383/ejam.20231130
I Podlubny, Fractional differential equations, Elsevier, 1999.
Yang F, Cao Y, and Li X X, Two regularization methods for identifying the source term of Caputo–Hadamard time fractional diffusion equation, Mathematical Methods in the Applied Sciences, 46(15), 16170-16202, (2023). DOI: https://doi.org/10.1002/mma.9444
J Hadamard, Essai sur l’´etude des fonctions, donn´ees par leur d´eveloppement de Taylor, Gauthier-Villars, 1892.
F Jarad, T Abdeljawad, and D Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equat. (2012), no. 1, 1–8. DOI: https://doi.org/10.1186/1687-1847-2012-142
M Gohar, C Li, and C Yin, On Caputo–Hadamard fractional differential equations, Int. J. Comput. Math. 97 (2020), no. 7, 1459–1483. DOI: https://doi.org/10.1080/00207160.2019.1626012
A Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Applied Mathematical Sciences (AMS, volume 120).
Hu B, Xie S, and Wang Z, Determination of a spacewise-dependent heat source by a logarithmic-type regularization method, Applicable Analysis, 102(14), (2023) 3986-4003. DOI: https://doi.org/10.1080/00036811.2022.2102490
Wei T and Wang J, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation Applied Numerical Mathematics, 78, 95-111, (2014). DOI: https://doi.org/10.1016/j.apnum.2013.12.002
Prilepko A I and Tkachenko D S, Inverse problem for a parabolic equation with integral overdetermination, J Inverse Ill- Posed Probl. 2003;11:191–218. DOI: https://doi.org/10.1515/156939403766493546
Choulli M, Yamamoto M, Conditional stability in determining a heat source, J Inverse Ill-Posed Probl.2004;12:233–243. DOI: https://doi.org/10.1515/1569394042215856
Johansson T, Lesnic D, Determination of a spacewise dependent heat source. J Comput Appl Math.2007; 209(1) :66–80. DOI: https://doi.org/10.1016/j.cam.2006.10.026
Wang Z, Ruan Z, Huang H, Determination of an unknown time-dependent heat source from A nonlocal measurement
by finite difference method. Acta Math Appl Sin, English Ser. 2020; 36(1) :151–165. DOI: https://doi.org/10.1007/s10255-020-0918-3
Ma YK, Prakash P, Deiveegan A, Generalized Tikhonov methods for an inverse source problem of the time fractional diffusion equation, Chaos Solitons Fractals. 2018; 108 :39–48. DOI: https://doi.org/10.1016/j.chaos.2018.01.003
Xiong X, Xue X, A fractional Tikhonov regularization method for identifying a space-dependent source in the time fractional diffusion equation, Appl Math Comput. 2019; 349 :292–303. DOI: https://doi.org/10.1016/j.amc.2018.12.063
Wang J G and Wei T, Quasi-reversibility method to identify a space-dependent source for the time fractional diffusion equation, Applied Mathematical Modelling, 39(20), (2015), 6139-6149. DOI: https://doi.org/10.1016/j.apm.2015.01.019
Wang Z, Qiu S and Yu S, Exponential Tikhonov regularization method for solving an inverse source problem of time fractional diffusion equations. J Comput Math. doi:10.4208/jcm.2107-m2020-0133. DOI: https://doi.org/10.4208/jcm.2107-m2020-0133
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ngo Ngoc Hung, Danh Hua Quoc Nam; Le Dinh Long (Corresponding Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024 Jun 07
Published 2024 Jun 15