New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method

Authors

  • Yusuf Pandir Department of Mathematics, Faculty of Arts and Sciences, Yozgat Bozok University, 66100 Yozgat/Turkey
  • Ali Ekin The Graduate School of Natural and Applied Sciences, Yozgat Bozok University, 66100 Yozgat, Turkey
https://doi.org/10.61383/ejam.20231130

Keywords:

New version of the trial equation method, nonlinear partial differential equations, Korteweg-de Vries (KdV) equation, solitary wave soliton solutions

Abstract

New solitary wave solutions for the Korteweg-de Vries (KdV) equation by a new version of the trial equation method are attained. Proper transformation reduces the Korteweg-de Vries (KdV) equation to a quadratic ordinary differential equation that is fully integrated using the new version trial equation approach. The family of solitary wave solutions of the reduced equation ensures a combined expression for the Korteweg-de Vries (KdV) equation, which contains exact solutions derived in recent years using different integration methods. The analytic solution of the reduced equation permits to find exact solutions for the Korteweg-de Vries (KdV) equation, providing a variety of new solitary wave solutions that have not been reported before.

References

W. Malfliet and W. Hereman, The Tanh method: I Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54, 563-568, (1996). DOI: https://doi.org/10.1088/0031-8949/54/6/003

H. A. Zedan, New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations, Comput. Appl. Math. 28(1), 1-14, (2009). DOI: https://doi.org/10.1590/S1807-03022009000100001

J. Hietarinta, Hirota's bilinear method and its generalization, Int. J. Mod. Phys. A 12(1), 43-51 (1997). DOI: https://doi.org/10.1142/S0217751X97000062

C.A. Gómez, A. Jhangeer, H. Rezazadeh, R.A. Talarposhti and A. Bekir, Closed form solutions of the perturbed Gerdjikov-Ivanov equation with variable coefficients, East Asian J. Appl. M 11(1), 207-218 (2021). DOI: https://doi.org/10.4208/eajam.230620.070920

W. X. Ma, Y. Zhang and Y. Tang, Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms, East Asian J. Appl. M $10(4), 732-745(2020)$ DOI: https://doi.org/10.4208/eajam.151019.110420

J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Soliton Fract. 30, 700-708 (2006). DOI: https://doi.org/10.1016/j.chaos.2006.03.020

L.K. Ravi, S. S. Ray and S. Sahoo, New exact solutions of coupled BoussinesqBurgers equations by Exp-function method, J. Ocean Eng. Sci 2, 34-46 (2017). DOI: https://doi.org/10.1016/j.joes.2016.09.001

M. A. Akbar, N. H. M. Ali and S. T. Mohyud-Din, The modified alternative $left(G^{prime} / Gright)-$ expansion method to nonlinear evolution equation: application to the (1+1)dimensional Drinfel'd-Sokolov-Wilson equation, SpringerPlus 327, 2-16 (2013). DOI: https://doi.org/10.1186/2193-1801-2-327

M. Shakeel and S. T. Mohyud-Din, New $left(G^{prime} / Gright)$-expansion method and its application to the Zakharov-Kuznetsov-Benjamin-Bona-Mahony ($mathrm{KK}-B B M)$ equation, J. Assoc. Arab Univ. Basic Appl. Sci. 18(1), 66-81 (2015). DOI: https://doi.org/10.1016/j.jaubas.2014.02.007

bibitem{10} C. S. Liu, Trial equation method for nonlinear evolution equations with rank inhomogeneous: mathematical discussions and applications, Commun. Theor. Phys. 45(2), 219-223 (2006). DOI: https://doi.org/10.1088/0253-6102/45/2/005

C. S. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun. 181(2), 317-324 (2010). DOI: https://doi.org/10.1016/j.cpc.2009.10.006

Y. Gurefe, A. Sonmezoglu and E. Misirli, Application of trial equation method to the nonlinear partial differential equations arising in mathematical physics, Pramana-J. Phys. 77(6), 1023-1029 (2011). DOI: https://doi.org/10.1007/s12043-011-0201-5

Y. Gurefe, A. Sonmezoglu and E. Misirli, Application of an irrational trial equation method to high dimensional nonlinear evolution equations, J. Adv. Math. Stud. 5(1), 41-47 (2012).

bibitem{14} Y. Pandir, Y. Gurefe, U. Kadak and E. Misirli, Classifications of exact solutions for some nonlinear partial differential equations with generalized evolution, Abstr. Appl. Anal. 2012, 1-16 (2012). DOI: https://doi.org/10.1155/2012/478531

Y. Pandir, Y. Gurefe and E. Misirli, Classification of exact solutions to the generalized Kadomtsev-Petviashvili equation, Phys. Scr. 87(2), 1-12 (2013). DOI: https://doi.org/10.1088/0031-8949/87/02/025003

Y. Gurefe, E. Misirli, A. Sonmezoglu and M. Ekici, Extended trial equation method to generalized nonlinear partial differential equations, Appl. Math. Comput. 219(10), 5253-5260 (2013). DOI: https://doi.org/10.1016/j.amc.2012.11.046

J. Zhang, F. Jiang and X. Zhao, An improved $left(G^{prime} / Gright)$-expansion method for solving nonlinear evolution equations, Int. J. Comput. Math. 87(8), 1716-1725 (2010). DOI: https://doi.org/10.1080/00207160802450166

S. Guo and Y. Zhou, The extended $left(G^{prime} / Gright)$-expansion method and its applications to the Whitham-Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations, Appl. Math. Comput. 215, 3214-3221 (2010). DOI: https://doi.org/10.1016/j.amc.2009.10.008

Y. Pandir, Y. Gurefe and E. Misirli, A multiple extended trial equation method for the fractional Sharma-Tasso-Olver equation, AIP Conf. Proc. 1558, 1927 (2013). DOI: https://doi.org/10.1063/1.4825910

X. J. Laia, J. F. Zhang and S. H. Meia, Application of the Weierstrass elliptic expansion method to the long-wave and short-wave resonance interaction system, $mathrm{Z}$. Naturforsch. 63a, 273-279 (2008). DOI: https://doi.org/10.1515/zna-2008-5-606

Z. Y. Zhang, Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov-Kuznetsov and the Hirota equations, Rom. J. Phys. 60(9-10), 1384$1394(2015)$

S. Shikuo, F. Zuntao, L. Shida and Z. Qiang, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289, 69-74 (2001). DOI: https://doi.org/10.1016/S0375-9601(01)00580-1

A. Bekir and O. Unsal, Analytic treatment of nonlinear evolution equations using first integral method, Pramana-J. Phys. 79(1), 3-17 (2012). DOI: https://doi.org/10.1007/s12043-012-0282-9

Y. Pandir, Symmetric Fibonacci function solutions of some nonlinear partial differential equations, Appl. Math. Inf. Sci. 8, 2237-2241 (2014). DOI: https://doi.org/10.12785/amis/080518

Y. A. Tandogan, Y. Pandir and Y. Gurefe, Solutions of the nonlinear differential equations by use of modified Kudryashov method, Turkish J. Math. Comput. Sci. 1, 54-60 (2013).

Y. Pandir and N. Turhan, $A$ new version of the generalized $F$-expansion method and its applications, AIP Conf. Proc. 1798, 020122 (2017). DOI: https://doi.org/10.1063/1.4972714

Y. Pandir, A new type of the generalized $F$-expansion method and its application to Sine-Gordon equation, Celal Bayar Univ. J. Sci. 13(3),647-650 (2017). DOI: https://doi.org/10.18466/cbayarfbe.306899

Y. Pandir, S. T. Demiray and H. Bulut, A new approach for some NLDEs with variable coefficients, Optik 127, 11183-11190 (2016). DOI: https://doi.org/10.1016/j.ijleo.2016.08.019

S. T. Demiray, Y. Pandir and H. Bulut, New solitary wave solutions of Maccari system, Ocean Eng. 103, 153-159 (2015). DOI: https://doi.org/10.1016/j.oceaneng.2015.04.037

S. T. Demiray, Y. Pandir and H. Bulut, New soliton solutions for Sasa-Satsuma equation, Waves Random Complex Media 25(3), 417-418 (2015). DOI: https://doi.org/10.1080/17455030.2015.1042945

Y. Pandir, A. Sonmezoglu, H. H. Duzgun and N. Turhan, Exact solutions of nonlinear Schrödinger's equation by using generalized Kudryashov method, AIP Conf. Proc. $1648,370004(2015)$. DOI: https://doi.org/10.1063/1.4912593

Y. Pandir and A. Ekin, Dynamics of combined soliton solutions of unstable nonlinear Schrodinger equation with new version of the trial equation method, Chinese J. Physics 67, 534-543 (2020). DOI: https://doi.org/10.1016/j.cjph.2020.08.013

K. Yang and J. Liu, The extended F-expansion method and exact solutions of nonlinear PDEs, Chaos, Solitons Fract. 22, 111-121 (2014). DOI: https://doi.org/10.1016/j.chaos.2003.12.069

M. A. Abdou, Further improved F-expansion and new exact solutions for nonlinear evolution equations, Nonlinear Dyn. 52, 277-288 (2008). DOI: https://doi.org/10.1007/s11071-007-9277-3

M. M. El-Borai, H. M. El-Owaidy, H. M. Ahmed, A. H. Arnous, S. Moshokoa, A. Biswas and M Belic, Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method, Optik, 128, 57-62 (2017). DOI: https://doi.org/10.1016/j.ijleo.2016.10.011

W. X. Ma and B. Fuchssteiner, Explicit and exact solutions to a Kolmogrov-PetrovskiPiskunov equation, Int. J. Nonlinear Mech. 31(3), 329-338 (1996). DOI: https://doi.org/10.1016/0020-7462(95)00064-X

C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Phys. Sinica 54(6), 2505-2509 (2005). DOI: https://doi.org/10.7498/aps.54.2505

C. S. Liu, Trial equation to solve the exact solutions for two kinds of $K d V$ equations with variable coeffients, Acta Phys. Sinica 54, 4506-4510 (2005). DOI: https://doi.org/10.7498/aps.54.4506

C. S. Liu, A new trial equation method and its applications, Commun. Theor. Phys. $45(3), 395-397(2006)$ DOI: https://doi.org/10.1088/0253-6102/45/3/003

C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Muira, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett. 19, 1095-1097 (1967). DOI: https://doi.org/10.1103/PhysRevLett.19.1095

V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation: A completely integrable Hamiltonian system, Funct. Anal. Appl. 5, 280-287 (1971). DOI: https://doi.org/10.1007/BF01086739

Downloads

Published

2023 May 09

How to Cite

[1]
Y. Pandir and A. Ekin, “New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method”, Electron. J. Appl. Math., vol. 1, no. 1, pp. 101–113, May 2023.

Issue

Section

Research Article
Received 2023 Mar 15
Accepted 2023 May 04
Published 2023 May 09

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.