New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method
Keywords:
New version of the trial equation method, nonlinear partial differential equations, Korteweg-de Vries (KdV) equation, solitary wave soliton solutionsAbstract
New solitary wave solutions for the Korteweg-de Vries (KdV) equation by a new version of the trial equation method are attained. Proper transformation reduces the Korteweg-de Vries (KdV) equation to a quadratic ordinary differential equation that is fully integrated using the new version trial equation approach. The family of solitary wave solutions of the reduced equation ensures a combined expression for the Korteweg-de Vries (KdV) equation, which contains exact solutions derived in recent years using different integration methods. The analytic solution of the reduced equation permits to find exact solutions for the Korteweg-de Vries (KdV) equation, providing a variety of new solitary wave solutions that have not been reported before.
References
W. Malfliet and W. Hereman, The Tanh method: I Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54, 563-568, (1996). DOI: https://doi.org/10.1088/0031-8949/54/6/003
H. A. Zedan, New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations, Comput. Appl. Math. 28(1), 1-14, (2009). DOI: https://doi.org/10.1590/S1807-03022009000100001
J. Hietarinta, Hirota's bilinear method and its generalization, Int. J. Mod. Phys. A 12(1), 43-51 (1997). DOI: https://doi.org/10.1142/S0217751X97000062
C.A. Gómez, A. Jhangeer, H. Rezazadeh, R.A. Talarposhti and A. Bekir, Closed form solutions of the perturbed Gerdjikov-Ivanov equation with variable coefficients, East Asian J. Appl. M 11(1), 207-218 (2021). DOI: https://doi.org/10.4208/eajam.230620.070920
W. X. Ma, Y. Zhang and Y. Tang, Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms, East Asian J. Appl. M $10(4), 732-745(2020)$ DOI: https://doi.org/10.4208/eajam.151019.110420
J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Soliton Fract. 30, 700-708 (2006). DOI: https://doi.org/10.1016/j.chaos.2006.03.020
L.K. Ravi, S. S. Ray and S. Sahoo, New exact solutions of coupled BoussinesqBurgers equations by Exp-function method, J. Ocean Eng. Sci 2, 34-46 (2017). DOI: https://doi.org/10.1016/j.joes.2016.09.001
M. A. Akbar, N. H. M. Ali and S. T. Mohyud-Din, The modified alternative $left(G^{prime} / Gright)-$ expansion method to nonlinear evolution equation: application to the (1+1)dimensional Drinfel'd-Sokolov-Wilson equation, SpringerPlus 327, 2-16 (2013). DOI: https://doi.org/10.1186/2193-1801-2-327
M. Shakeel and S. T. Mohyud-Din, New $left(G^{prime} / Gright)$-expansion method and its application to the Zakharov-Kuznetsov-Benjamin-Bona-Mahony ($mathrm{KK}-B B M)$ equation, J. Assoc. Arab Univ. Basic Appl. Sci. 18(1), 66-81 (2015). DOI: https://doi.org/10.1016/j.jaubas.2014.02.007
bibitem{10} C. S. Liu, Trial equation method for nonlinear evolution equations with rank inhomogeneous: mathematical discussions and applications, Commun. Theor. Phys. 45(2), 219-223 (2006). DOI: https://doi.org/10.1088/0253-6102/45/2/005
C. S. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun. 181(2), 317-324 (2010). DOI: https://doi.org/10.1016/j.cpc.2009.10.006
Y. Gurefe, A. Sonmezoglu and E. Misirli, Application of trial equation method to the nonlinear partial differential equations arising in mathematical physics, Pramana-J. Phys. 77(6), 1023-1029 (2011). DOI: https://doi.org/10.1007/s12043-011-0201-5
Y. Gurefe, A. Sonmezoglu and E. Misirli, Application of an irrational trial equation method to high dimensional nonlinear evolution equations, J. Adv. Math. Stud. 5(1), 41-47 (2012).
bibitem{14} Y. Pandir, Y. Gurefe, U. Kadak and E. Misirli, Classifications of exact solutions for some nonlinear partial differential equations with generalized evolution, Abstr. Appl. Anal. 2012, 1-16 (2012). DOI: https://doi.org/10.1155/2012/478531
Y. Pandir, Y. Gurefe and E. Misirli, Classification of exact solutions to the generalized Kadomtsev-Petviashvili equation, Phys. Scr. 87(2), 1-12 (2013). DOI: https://doi.org/10.1088/0031-8949/87/02/025003
Y. Gurefe, E. Misirli, A. Sonmezoglu and M. Ekici, Extended trial equation method to generalized nonlinear partial differential equations, Appl. Math. Comput. 219(10), 5253-5260 (2013). DOI: https://doi.org/10.1016/j.amc.2012.11.046
J. Zhang, F. Jiang and X. Zhao, An improved $left(G^{prime} / Gright)$-expansion method for solving nonlinear evolution equations, Int. J. Comput. Math. 87(8), 1716-1725 (2010). DOI: https://doi.org/10.1080/00207160802450166
S. Guo and Y. Zhou, The extended $left(G^{prime} / Gright)$-expansion method and its applications to the Whitham-Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations, Appl. Math. Comput. 215, 3214-3221 (2010). DOI: https://doi.org/10.1016/j.amc.2009.10.008
Y. Pandir, Y. Gurefe and E. Misirli, A multiple extended trial equation method for the fractional Sharma-Tasso-Olver equation, AIP Conf. Proc. 1558, 1927 (2013). DOI: https://doi.org/10.1063/1.4825910
X. J. Laia, J. F. Zhang and S. H. Meia, Application of the Weierstrass elliptic expansion method to the long-wave and short-wave resonance interaction system, $mathrm{Z}$. Naturforsch. 63a, 273-279 (2008). DOI: https://doi.org/10.1515/zna-2008-5-606
Z. Y. Zhang, Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov-Kuznetsov and the Hirota equations, Rom. J. Phys. 60(9-10), 1384$1394(2015)$
S. Shikuo, F. Zuntao, L. Shida and Z. Qiang, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289, 69-74 (2001). DOI: https://doi.org/10.1016/S0375-9601(01)00580-1
A. Bekir and O. Unsal, Analytic treatment of nonlinear evolution equations using first integral method, Pramana-J. Phys. 79(1), 3-17 (2012). DOI: https://doi.org/10.1007/s12043-012-0282-9
Y. Pandir, Symmetric Fibonacci function solutions of some nonlinear partial differential equations, Appl. Math. Inf. Sci. 8, 2237-2241 (2014). DOI: https://doi.org/10.12785/amis/080518
Y. A. Tandogan, Y. Pandir and Y. Gurefe, Solutions of the nonlinear differential equations by use of modified Kudryashov method, Turkish J. Math. Comput. Sci. 1, 54-60 (2013).
Y. Pandir and N. Turhan, $A$ new version of the generalized $F$-expansion method and its applications, AIP Conf. Proc. 1798, 020122 (2017). DOI: https://doi.org/10.1063/1.4972714
Y. Pandir, A new type of the generalized $F$-expansion method and its application to Sine-Gordon equation, Celal Bayar Univ. J. Sci. 13(3),647-650 (2017). DOI: https://doi.org/10.18466/cbayarfbe.306899
Y. Pandir, S. T. Demiray and H. Bulut, A new approach for some NLDEs with variable coefficients, Optik 127, 11183-11190 (2016). DOI: https://doi.org/10.1016/j.ijleo.2016.08.019
S. T. Demiray, Y. Pandir and H. Bulut, New solitary wave solutions of Maccari system, Ocean Eng. 103, 153-159 (2015). DOI: https://doi.org/10.1016/j.oceaneng.2015.04.037
S. T. Demiray, Y. Pandir and H. Bulut, New soliton solutions for Sasa-Satsuma equation, Waves Random Complex Media 25(3), 417-418 (2015). DOI: https://doi.org/10.1080/17455030.2015.1042945
Y. Pandir, A. Sonmezoglu, H. H. Duzgun and N. Turhan, Exact solutions of nonlinear Schrödinger's equation by using generalized Kudryashov method, AIP Conf. Proc. $1648,370004(2015)$. DOI: https://doi.org/10.1063/1.4912593
Y. Pandir and A. Ekin, Dynamics of combined soliton solutions of unstable nonlinear Schrodinger equation with new version of the trial equation method, Chinese J. Physics 67, 534-543 (2020). DOI: https://doi.org/10.1016/j.cjph.2020.08.013
K. Yang and J. Liu, The extended F-expansion method and exact solutions of nonlinear PDEs, Chaos, Solitons Fract. 22, 111-121 (2014). DOI: https://doi.org/10.1016/j.chaos.2003.12.069
M. A. Abdou, Further improved F-expansion and new exact solutions for nonlinear evolution equations, Nonlinear Dyn. 52, 277-288 (2008). DOI: https://doi.org/10.1007/s11071-007-9277-3
M. M. El-Borai, H. M. El-Owaidy, H. M. Ahmed, A. H. Arnous, S. Moshokoa, A. Biswas and M Belic, Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method, Optik, 128, 57-62 (2017). DOI: https://doi.org/10.1016/j.ijleo.2016.10.011
W. X. Ma and B. Fuchssteiner, Explicit and exact solutions to a Kolmogrov-PetrovskiPiskunov equation, Int. J. Nonlinear Mech. 31(3), 329-338 (1996). DOI: https://doi.org/10.1016/0020-7462(95)00064-X
C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Phys. Sinica 54(6), 2505-2509 (2005). DOI: https://doi.org/10.7498/aps.54.2505
C. S. Liu, Trial equation to solve the exact solutions for two kinds of $K d V$ equations with variable coeffients, Acta Phys. Sinica 54, 4506-4510 (2005). DOI: https://doi.org/10.7498/aps.54.4506
C. S. Liu, A new trial equation method and its applications, Commun. Theor. Phys. $45(3), 395-397(2006)$ DOI: https://doi.org/10.1088/0253-6102/45/3/003
C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Muira, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett. 19, 1095-1097 (1967). DOI: https://doi.org/10.1103/PhysRevLett.19.1095
V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation: A completely integrable Hamiltonian system, Funct. Anal. Appl. 5, 280-287 (1971). DOI: https://doi.org/10.1007/BF01086739
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Yusuf Pandir (Corresponding Author); Ali Ekin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023 May 04
Published 2023 May 09