Analytical Solution of the D-DimensionalKlein-Gordon Equation for Dan-Fan MolecularPotential Using AIM

Authors

DOI:

https://doi.org/10.61383/ejam.20253158

Keywords:

Deng-Fan molecular potential, improved Greene-Aldrich approximation scheme, asymptotic iteration method (AIM)

Abstract

In this article, the D-dimensional Klein-Gordon equation within the framework of improved Greene-Aldrich approximations scheme for Deng-Fan molecular potential is solved for s-wave and arbitrary angular momenta. The energy eigenvalues and corresponding wave functions are obtained in an exact analytical manner by using asymptotic iteration method.

References

[1] W. Greiner, Relativistic Quantum Mechanics, Springer-Verlag, Berlin, 2000. DOI: https://doi.org/10.1007/978-3-662-04275-5

[2] T. Ohlsson, Relativistic Quantum Physics: From Advanced Quantum Mechanics to Introductory Quantum Field Theory, Cambridge University Press, Cambridge, 2011. DOI: https://doi.org/10.1017/CBO9781139032681

[3] C. P. Onyenegecha, A. I. Opara, I. J. Njoku, S. C. Udensi, U. M. Ukewuihe, C. J. Okereke, A. Omame, Analytical solutions of D-dimensional Klein-Gordon equation with modified Möbius squared potential, Results Phys., 25 (2021), 104144, DOI: 10.1016/j.rinp.2021.104144. DOI: https://doi.org/10.1016/j.rinp.2021.104144

[4] A. N. Ikot, H. P. Obong, H. Hassanabadi, N. Salehi, O. S. Thomas, Solutions of D-dimensional Klein-Gordon equation for multiparameter exponential-type potential using supersymmetric quantum mechanics, Indian J. Phys., 89 (2015), no. 7, 649–658. DOI: https://doi.org/10.1007/s12648-014-0629-9

[5] A. N. Ikot, H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, D-dimensional Dirac equation for energy-dependent pseudoharmonic and Mie-type potentials via SUSYQM, Commun. Theor. Phys., 61 (2014), no. 4, 436–442. DOI: https://doi.org/10.1088/0253-6102/61/4/06

[6] M. E. Udoh, U. S. Okorie, M. I. Ngwueke, E. E. Ituen, A. N. Ikot, Rotation-vibrational energies for some diatomic molecules with improved Rosen-Morse potential in D-dimensions, J. Mol. Model., 25 (2019), no. 6, 170, DOI: 10.1007/s00894-019-4057-8. DOI: https://doi.org/10.1007/s00894-019-4040-5

[7] C. A. Onate, A. N. Ikot, M. C. Onyeaju, M. E. Udoh, Bound state solutions of D-dimensional Klein-Gordon equation with hyperbolic potential, Karbala Int. J. Mod. Sci., 3 (2017), no. 1, 1–8. DOI: https://doi.org/10.1016/j.kijoms.2016.12.001

[8] J. Gao, M. C. Zhang, Analytical solutions to the D-dimensional Schrödinger equation with the Eckart potential, Chinese Phys. Lett., 33 (2016), no. 1, 010308. DOI: https://doi.org/10.1088/0256-307X/33/1/010303

[9] V. H. Badalov, B. Baris, K. Uzun, Bound states of the D-dimensional Schrödinger equation for the generalized Woods-Saxon potential, Modern Phys. Lett. A, 34 (2019), no. 12, 1950107. DOI: https://doi.org/10.1142/S0217732319501074

[10] C. A. Onate, O. Ebomwonyi, K. O. Dopamu, J. O. Okoro, M. O. Oluwayemi, Eigen solutions of the D-dimensional Schrödinger equation with inverse trigonometry scarf potential and Coulomb potential, Chinese J. Phys., 56 (2018), no. 5, 2538–2546. DOI: https://doi.org/10.1016/j.cjph.2018.03.013

[11] A. F. Nikiforov, V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988. DOI: https://doi.org/10.1007/978-1-4757-1595-8

[12] A. N. Ikot, A. B. Udoimuk, L. E. Akpabio, Bound states solution of Klein-Gordon equation with type-I equal vector and scalar Pöschl-Teller potential for arbitrary l-state, Am. J. Sci. Ind. Res., 2 (2011), no. 2, 179–183. DOI: https://doi.org/10.5251/ajsir.2011.2.2.179.183

[13] L. H. Zhang, X. P. Li, C. S. Jia, Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin-orbit coupling term, Phys. Lett. A, 372 (2008), no. 13, 2201–2207. DOI: https://doi.org/10.1016/j.physleta.2007.11.022

[14] A. D. Alhaidari, Nonrelativistic Green’s function for systems with position-dependent mass, Int. J. Theor. Phys., 42 (2003), no. 12, 2999–3010. DOI: https://doi.org/10.1023/B:IJTP.0000006027.49538.16

[15] S. H. Dong, Wave Equations in Higher Dimensions, Springer-Verlag, New York, 2011. DOI: https://doi.org/10.1007/978-94-007-1917-0

[16] A. R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino, Supersymmetric approach to quantum systems with position-dependent effective mass, Phys. Rev. A, 60 (1999), no. 6, 4318–4325. DOI: https://doi.org/10.1103/PhysRevA.60.4318

[17] B. Biswas, S. Debnath, Bound states of the Dirac-Kratzer-Fues potential with spin and pseudo-spin symmetry via Laplace transform approach, Bulg. J. Phys., 43 (2016), no. 2, 89–99.

[18] B. Biswas, S. Debnath, Bound states of the pseudoharmonic potential of the Dirac equation with spin and pseudo-spin symmetry via Laplace transform approach, Acta Phys. Pol. A, 130 (2016), no. 3, 692–696. DOI: https://doi.org/10.12693/APhysPolA.130.692

[19] S. H. Dong, Factorization Method in Quantum Mechanics, Springer, Dordrecht, 2007. DOI: https://doi.org/10.1007/978-1-4020-5796-0

[20] Z. H. Deng, Y. P. Fan, A potential function of diatomic molecules, J. Shandong Univ. (Nat. Sci.), 1 (1957), 11–15.

[21] S. H. Dong, X. Y. Gu, Arbitrary l-state solutions of the Schrödinger equation with the Deng-Fan molecular potential, J. Phys.: Conf. Ser., 96 (2008), 012109. DOI: https://doi.org/10.1088/1742-6596/96/1/012109

[22] R. L. Greene, C. Aldrich, Variational wave functions for a screened Coulomb potential, Phys. Rev. A, 14 (1976), no. 6, 2363–2366. DOI: https://doi.org/10.1103/PhysRevA.14.2363

[23] T. T. Ibrahim, K. J. Oyewumi, M. Wyngaardt, Analytical solution of N-dimensional Klein-Gordon and Dirac equations with Rosen-Morse potential, Eur. Phys. J. Plus, 127 (2012), no. 9, 100. DOI: https://doi.org/10.1140/epjp/i2012-12100-5

[24] H. Hassanabadi, S. Zarrinkamar, H. Rahimov, Approximate solution of D-dimensional Klein-Gordon equation with Hulthén-type potential via SUSYQM, Commun. Theor. Phys., 56 (2011), no. 3, 423–428. DOI: https://doi.org/10.1088/0253-6102/56/3/05

[25] K. J. Oyewumi, E. A. Bangudu, Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional space, Arab. J. Sci. Eng., 28 (2003), no. 2A, 173–182.

[26] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products, Elsevier Academic Press, San Diego, 2007.

Downloads

Published

2025 Mar 22

Issue

Section

Research Article

How to Cite

[1]
“Analytical Solution of the D-DimensionalKlein-Gordon Equation for Dan-Fan MolecularPotential Using AIM”, Electron. J. Appl. Math., vol. 3, no. 1, pp. 34–41, Mar. 2025, doi: 10.61383/ejam.20253158.

Similar Articles

1-10 of 20

You may also start an advanced similarity search for this article.