Analytical Solutions of the D-dimensional Klein-Gordon equation with q-deformed modified P¨oschl-Teller Potential

Authors

https://doi.org/10.61383/ejam.20242156

Keywords:

q-deformed modified P¨oschl-Teller potential, Greene-Aldrich approxi15 mation, Nikiforov-Uvarov (N-U) method

Abstract

In this article, the D-dimensional Klein-Gordon equation within the framework of Greene-Aldrich approximations scheme for q-deformed modified P¨oschl-Teller Potential is solved for s-wave and arbitrary angular momenta. The energy eigenvalues and corresponding wave functions are obtained in an exact analytical manner via the Nikiforov-Uvarov (N-U) method. Further, it is shown that in the non-relativistic limit, the energy eigenvalues reduce to that of Schrodinger equations for the potential. It is also shown that, the obtained results lead to the solutions of the same problem for modified P¨oschl-Teller potential for \(q = 1\).

References

S.H. Dong, G.H. Sun, M. Lozada-Cassou, “Exact solutions and ladder operators for new anharmonic oscillator”, Phys. Lett. A., 340(2005), 94-103. DOI: https://doi.org/10.1016/j.physleta.2005.04.024

S.H. Dong, A. Gonzalez-Cisneros, “Energy spectra of the hyperbolic and Second Poschl-Teller like potentials solved by new exact quantization rule”, Ann. Phys., 323(2008) 1136-1149. DOI: https://doi.org/10.1016/j.aop.2007.12.002

S.H. Dong, X.Y. Gu, “Arbitrary l-state solutions of the Schrodinger equation with the Deng-Fan molecular potential”, J. Phys. Conf. Ser., 96(2008), 012109. DOI: https://doi.org/10.1088/1742-6596/96/1/012109

C.P. Onyenegecha, A.I. Opara, I.J. Njoku, S.C. Udensi, U.M. Ukewuihe, C.J. Okereke, A. Omame, “Analytical solutions of D-dimensional Klein-Gordon equation with modified Mobius squared potential”, Results in Physics, 25(2021),104144. DOI: https://doi.org/10.1016/j.rinp.2021.104144

A. N. Ikot, H. P. Obong, H. Hassanabadi, N. Salehi, O. S. Thomas, “Solutions of D-dimensional Klein-Gordon equation for multiparameter exponential-type potential using supersymmtric quantum mechanics”, Ind J Phys., 89(2015), 649. DOI: https://doi.org/10.1007/s12648-014-0629-9

A.N. Ikot, H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, “D-Dimensional Dirac Equation for Energy-Dependent Pseudoharmonic and Mie-type Potentials via SUSYQM”, Commun Theor Phys., 61(2014), 436. DOI: https://doi.org/10.1088/0253-6102/61/4/06

M.E. Udoh, U.S. Okorie, M.I. Ngwueke, E.E. Ituen, A.N. Ikot, “Rotation vibrational energies for some diatomic molecules with improved Rosen-Morse potential in D-dimensions”, J Mol Mod., 25,(2019), 170. DOI: https://doi.org/10.1007/s00894-019-4040-5

C.A. Onate, A.N. Ikot AN, M.C. Onyeaju, M.E. Udoh, “Bound state solutions of D-dimensional Klein-Gordon equation with hyperbolic potential”, Karbala Int J Mod Sci., 3(2016), 1. DOI: https://doi.org/10.1016/j.kijoms.2016.12.001

J. Gao, M.C. Zhang, “Analytical Solutions to the D-Dimensional Schrodinger Equation with the Eckart Potential”, Chin. Phys Lett., 33(2016), 010308. DOI: https://doi.org/10.1088/0256-307X/33/1/010303

V.H. Badalov, B. Baris, K. Uzun, “Bound states of the D-dimensional Schrodinger equation for the generalized Woods-Saxon potential”, Mod Phys Lett., 34(2019), 1950107. DOI: https://doi.org/10.1142/S0217732319501074

C.A. Onate, O. Ebomwonyi, K.O. Dopamu, J.O. Okoro, M.O. Oluwayemi, “Eigen solutions of the D-dimensional Schr¨odinger equation with inverse trigonometry scarf potential and Coulomb potential”, Chin J Phys., 56(2018), 2538. DOI: https://doi.org/10.1016/j.cjph.2018.03.013

O. Aydogdu, R. Server, “Solution of the Dirac equation for pseudo-harmonic potential by using the Nikiforov-Uvarov method”, Phys. Scr., 80(2009), 015001. DOI: https://doi.org/10.1088/0031-8949/80/01/015001

S. Sur, S. Debnath, “Relativistic Klein-Gordan Equation with Position Dependent Mass for q-deformed Modifed Eckart plus Hylleraas potential”, EJTP, 14(37)(2018), 79-90.

C. Berkdemir, J. Han, “Any l-state solutions of the Morse potential through the Pekeris approximation and Nikiforov-Uvarov method”, Chem. Phys. Lett., 409(2005), 203. DOI: https://doi.org/10.1016/j.cplett.2005.05.021

B. Biswas, S. Debnath, “Exact solutions of the Klein-Gordon equation for the mass-dependent generalized Woods-Saxon potential”, Bull. Cal. Math. Soc., 104(5)(2012), 481-490.

S. Debnath, B. Biswas, “Analytical Solutions of the Klein-Gordon Equation for Rosen-Morse Potential via Asymptotic Iteration Method”, EJTP, 9(26)(2012), 191-198.

J.Y. Guo, X.Z. Fang, F.X. Xu, “Pseudospin symmetry in the relativistic harmonic oscillator”, Nucl. Phys. A, 757(2005), 411. DOI: https://doi.org/10.1016/j.nuclphysa.2005.04.017

A.F. Nikiforov, V.B. Uvarov, “Special Functions of Mathematical Physics”, Birkh¨auser,Basel, 1988. DOI: https://doi.org/10.1007/978-1-4757-1595-8

A.N. Ikot, A.B. Udoimuk, L.E. Akpabio, “Bound states solution of Klein-Gordon Equation with type-I equal vector and Scalar Poschl-Teller potential for Arbitray I-State”, American J. of Scientific and Industrial Research, 2.2(2011), 179. DOI: https://doi.org/10.5251/ajsir.2011.2.2.179.183

C. A. Onate, O. Adebimpe, A. F. Lukman, I. J. Adama, J. O. Okoro, E. O. Davids, “Approximate eigensolutions of the attractive potential via parametric Nikiforov-Uvarov method”, 4(2018), 00977:1-16. DOI: https://doi.org/10.1016/j.heliyon.2018.e00977

L.H. Zhang, X.P. Li, C.S. Jia, “Analytical Approximation to the Solution of the Dirac Equation with the Eckart Potential Including the Spin-Orbit Coupling Term”, Phys. Lett. A, 372(2008), 2201. DOI: https://doi.org/10.1016/j.physleta.2007.11.022

A.D. Alhaidari, “Nonrelativistic Green’s Function for Systems with Position-Dependent Mass”, Int. J. Theor. Phys., 42(2003), 2999. DOI: https://doi.org/10.1023/B:IJTP.0000006027.49538.16

S.H. Dong, “Wave equations in Higher Dimensions”, Springer-Verlag, New York, 2011. DOI: https://doi.org/10.1007/978-94-007-1917-0

A.R. Plastino,A. Rigo, M. Casas, F. Garcias, A. PLastine, “Super symmertric approach to quantum systems with position-dependent effective mass”, Phys. Rev. A, 60(6)(1999), 4318. DOI: https://doi.org/10.1103/PhysRevA.60.4318

B. Biswas, S. Debnath, “Bound states of the Dirac-Kratzer-Fues potential with spin and pseudo-spin symmetry via Laplace transform approach”, Bulg. J. Phys., 43(2016), 89-99.

B. Biswas, S. Debnath, “Bound states of the pseudoharmonic potential of the Dirac equation with spin and pseudo-spin symmetry via Laplace transform approach”, Acta Physica Polonica A, 130(5)(2016), 692-696. DOI: https://doi.org/10.12693/APhysPolA.130.692

S.H. Dong, “Factorization Method in Quantum Mechanics”, Springer Science and Business Media, 2007. DOI: https://doi.org/10.1007/978-1-4020-5796-0

G. P¨oschl, E. Teller, “ Remarks on the quantum mechanics of the anharmonic oscillator”, Journal of Physics, 83(1933), 143-151. DOI: https://doi.org/10.1007/BF01331132

J.S. Dehesa, A. Mart´ınez-Finkelshtein, V.N. Sorokin, “ Information-theoretic measures for Morse and P¨oschl-Teller potentials”, Molecular Physics, 104(4)(2006), 613-622. DOI: https://doi.org/10.1080/00268970500493243

S. Fl¨ugge, “Practical Quantum Mechanics”, Springer Verlag, Berlin, 1974.

R.L., Greene, C. Aldrich, “Variational wave functions for a screened Coulomb potential(Review)”, Physical Review A, 14(6)(1976), 2363-2366. DOI: https://doi.org/10.1103/PhysRevA.14.2363

T.T. Ibrahim, K.J. Oyewumi, M. Wyngaadt, “Analytical solution of Ndimensional Klein-Gordon and Dirac equations with Rosen-Morse potential”, Eur. Phys. J. Plus, 127(2012), 100. DOI: https://doi.org/10.1140/epjp/i2012-12100-5

H. Hassanabadi, S. Zarrinkamar, H. Rahimov, “Approximate Solution of DDimensional Klein-Gordon Equation with Hulthen-Type Potential via SUSYQM”, Comm. Theor. Phys., 56(2011), 423. DOI: https://doi.org/10.1088/0253-6102/56/3/05

K. J. Oyewumi, E. A. Bangudu, “Isotropic Harmonic Oscillator plus Inverse Quadratic Potential in N-Dimensional Space”, The Arabian Journal for Science and Engineering, 28(2A)(2003), 173.

Downloads

Published

2024 Mar 22

How to Cite

[1]
B. Biswas, “Analytical Solutions of the D-dimensional Klein-Gordon equation with q-deformed modified P¨oschl-Teller Potential”, Electron. J. Appl. Math., vol. 2, no. 1, pp. 14–21, Mar. 2024.

Issue

Section

Research Article
Received 2023 Nov 22
Accepted 2024 Mar 19
Published 2024 Mar 22

Similar Articles

You may also start an advanced similarity search for this article.