Multiplicity results for a Kirchhoff type equations with general potential

Authors

https://doi.org/10.61383/ejam.20242259

Keywords:

Palais-Smale condition, Morse index, Kirchhoff type equation, Variational methods

Abstract

This research we examine a Kirchhoff type equation in \(\mathbb{R}^{3}\) involving a potential that changes sign. By imposing appropriate conditions on \(V\) and making spectral assumptions, we successfully establish the existence of multiple solutions for this particular issue using variational methods.

References

Y Shan, Morse index and multiple solutions for the asymptotically linear Schr¨odinger type equation. Nonlinear Anal, 89 (2013), 170–178, DOI:10. 1016/j. na. 2013. 05. 014. DOI: https://doi.org/10.1016/j.na.2013.05.014

Conley C, Zehnder E, Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm Pure Appl Math, 37 (1984), no. 2, 207–253, DOI: 10. 1002/cpa. 3160370204. DOI: https://doi.org/10.1002/cpa.3160370204

Y Shan, Existence and multiplicity results for nonlinear Schr¨odinger-Poisson equation with general potential. Frontiers of Mathematics in China. 15 (2020), no. 6, 1189–1200, DOI: 10. 1007/s11464-020-0881-6. DOI: https://doi.org/10.1007/s11464-020-0881-6

A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string. T. Am. Math. Soc, 348 (1996), NO. 1, 305-330. DOI: 10. 1090/S0002-9947-96-01532-2. DOI: https://doi.org/10.1090/S0002-9947-96-01532-2

M. Cavalcanti,V. Cavalcanti,J. A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6 (2001), no. 6, 701-730, DOI: 10. 57262/ade/1357140586. DOI: https://doi.org/10.57262/ade/1357140586

C. Chen,Y. Kuo,T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differential Equations, 250 (2011), no. 4, 1876-1908. DOI: 10. 1016/j. jde. 2010. 11. 017. DOI: https://doi.org/10.1016/j.jde.2010.11.017

P. D’Ancona,S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math, 108 (1992), no. 1, 247-262, DOI: 10. 1007/BF02100605. DOI: https://doi.org/10.1007/BF02100605

Rabinowitz P H, Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg Conf Ser Math, Providence: Amer Math Soc, 1986. DOI: https://doi.org/10.1090/cbms/065

Y Wu, S Liu, Existence and multiplicity of solutions for asymptotically linear Schr¨odinger–Kirchhoff equations. Nonlinear Analysis: Real World Applications. 26 (2015), 191–198, DOI: 10. 1016/j. nonrwa. 2015. 05. 010. DOI: https://doi.org/10.1016/j.nonrwa.2015.05.010

S Jiang, S L, Multiple solutions for Schrodinger–Kirchhoff equations with indefinite potential. Applied Mathematics Letters. 124 (2022), 107672, DOI: 10. 1016/j. aml. 2021. 107672. DOI: https://doi.org/10.1016/j.aml.2021.107672

H Liu, H Chen, Multiple solutions for an indefinite Kirchhoff-type equation with sign-changing potential. Electronic Journal of Differential Equations, 2015 (2015), no. 274, 1–9.

S Chen, C Wang, Existence of multiple nontrivial solutions for a Schr¨odinger-Poisson system. J Math Anal Appl, 411 (2014), no. 2, 787–793, DOI: 10. 1016/j. jmaa. 2013. 10. 008. DOI: https://doi.org/10.1016/j.jmaa.2013.10.008

L Xu, F Li, Q Xie, Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation. Qual. Theory Dyn. Syst. 23 (2024), no. 3, 135, DOI: 10. 1007/s12346-024-01001-3. DOI: https://doi.org/10.1007/s12346-024-01001-3

Kirchhoff G, Hensel K, Vorlesungen ¨uber mathematische Physik, Druck und Verlag von BG Teubner, 1883.

Lions J L, On some questions in boundary value problems of mathematical physics. North-Holland Mathematics Studies, North-Holland, 30 (1978), 284-346, DOI: 10. 1016/s0304-0208 (08)70870-2. DOI: https://doi.org/10.1016/S0304-0208(08)70870-3

Y Dong, Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations. Calc Var Partial Differential Equations, 38 (2010), no. 2, 75–109, DOI: 10. 1007/s00526-009-0279-5. DOI: https://doi.org/10.1007/s00526-009-0279-5

Y Long, Index Theory for Symplectic Paths with Applications. Progr Math, Basel: Birkhauser, 2002. DOI: https://doi.org/10.1007/978-3-0348-8175-3

Reed M, Simon B, Methods of Modern Mathematical Physics IV: Analysis of Operators, New York: Academic Press, 1978.

Downloads

Published

2024 May 11

How to Cite

[1]
L. Chen, T. Hu, and J. Zhou, “Multiplicity results for a Kirchhoff type equations with general potential”, Electron. J. Appl. Math., vol. 2, no. 2, pp. 1–9, May 2024.

Issue

Section

Research Article
Received 2024 Jan 09
Accepted 2024 May 02
Published 2024 May 11

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.