Regularization of nonlocal pseudo-parabolic equation with random noise

Authors

  • Yusuf Gurefe Department of Mathematics, Faculty of Science, Mersin University, Mersin, Turkey
  • Le Dinh Long ORCID Division of Applied Mathematics, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam Corresponding Author
  • Devendra Kumar Department of Mathematics, University of Rajasthan, Jaipur-302004, India

DOI:

https://doi.org/10.61383/ejam.20231119

Keywords:

Fractional Tikhonov, Regularization, Conformable time derivative, Discrete data, random noise

Abstract

In this paper, we consider an inverse problem for a time-fractional diffusion equation with the inhomogeneous source. These problems have many applications in engineering such as image processing, geophysics, biology. We get the result in random case as follows:

• This problem is ill-posed.

• We have used the nonlocal condition, instead of the final time condition.

• Using the IFT regularization method, constructing the regularized solution, the a-priori choice rule for the regularization parameter is discussed and yields the corresponding convergence rate.

• A numerical experiment is presented to illustrate the results in theory.

References

[1] B. Berkowitz, H. Scher, and S. E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res. 36 (2000), 149–158. DOI: https://doi.org/10.1029/1999WR900295

[2] D. Bianchi, A. Buccini, and M. Donatelli, Iterated fractional Tikhonov regularization, Inverse Probl. 31 (2015), no. 5, 055005.

[3] D. Bianchi, A. Buccini, M. Donatelli, and S. Serra-Capizzano, Iterated fractional Tikhonov regularization, Inverse Problems 31 (2015), no. 5, 055005. DOI: https://doi.org/10.1088/0266-5611/31/5/055005

[4] N. H. Can, Y. Zhou, N. H. Tuan, and T. N. Thach, Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data, Chaos Solitons Fractals 136 (2020), 109847, 14 pp. DOI: https://doi.org/10.1016/j.chaos.2020.109847

[5] L. Cavalier, Nonparametric statistical inverse problems, Inverse Probl. 24 (2008), no. 3, 034004. DOI: https://doi.org/10.1088/0266-5611/24/3/034004

[6] D. Gerth, E. Klann, and R. Ramlau, On fractional Tikhonov regularization, J. Inverse Ill-Posed Probl. 23 (2015), no. 6, 611–625. DOI: https://doi.org/10.1515/jiip-2014-0050

[7] R. Gorenflo, F. Mainardi, E. Scalas, and M. Raberto, Fractional calculus and continuous-time finance III: The diffusion limit, in: Mathematical Finance, Springer-Verlag, New York, 2001, pp. 171–180. DOI: https://doi.org/10.1007/978-3-0348-8291-0_17

[8] M. G. Hall and T. R. Barrick, From diffusion-weighted MRI to anomalous diffusion imaging, Magn. Reson. Med. 59 (2008), 447–455. DOI: https://doi.org/10.1002/mrm.21453

[9] F. D. Hua and J. R. Wei, The regularized solution approximation of forward/backward problems for a fractional pseudo-parabolic equation with random noise, Acta Math. Sci. 43 (2023), 324–348. DOI: https://doi.org/10.1007/s10473-023-0118-3

[10] L. D. Long, N. H. Luc, Y. Zhou, and H. C. Nguyen, Identification of source term for the time-fractional diffusion-wave equation by fractional Tikhonov method, Mathematics 7 (2019), 934. DOI: https://doi.org/10.3390/math7100934

[11] F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas, Fractional calculus and continuous-time finance II: The waiting-time distribution, Phys. A 287 (2000), 468–481. DOI: https://doi.org/10.1016/S0378-4371(00)00386-1

[12] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), 161–208. DOI: https://doi.org/10.1088/0305-4470/37/31/R01

[13] H. T. Nguyen, D. L. Le, and V. T. Nguyen, Regularized solution of an inverse source problem for a time fractional diffusion equation, Appl. Math. Model. 40 (2016), 8244–8264. DOI: https://doi.org/10.1016/j.apm.2016.04.009

[14] I. Podlubny, Fractional Differential Equations, Academic Press, London, 1999.

[15] I. Podlubny and M. Kacenak, Mittag-Leffler function: the MATLAB routine, MATLAB Central File Exchange, 2012 (accessed 2012).

[16] L. Sabatelli, S. Keating, J. Dudley, and P. Richmond, Waiting time distributions in financial markets, Eur. Phys. J. B 27 (2002), 273–275. DOI: https://doi.org/10.1140/epjb/e20020151

[17] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426–447. DOI: https://doi.org/10.1016/j.jmaa.2011.04.058

[18] E. Scalas, R. Gorenflo, and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A 284 (2000), 376–384. DOI: https://doi.org/10.1016/S0378-4371(00)00255-7

[19] Y. Shuping, T. X. Xiang, and N. Yan, Iterated fractional Tikhonov regularization method for solving the spherically symmetric backward time-fractional diffusion equation, Appl. Numer. Math. 160 (2021), 217–241. DOI: https://doi.org/10.1016/j.apnum.2020.10.008

[20] I. M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion, Chaos 15 (2005), 1–7. DOI: https://doi.org/10.1063/1.1860472

[21] T. N. Thach, N. H. Tuan, P. T. M. Tam, M. N. Minh, and N. H. Can, Identification of an inverse source problem for time-fractional diffusion equation with random noise, Math. Methods Appl. Sci. 42 (2019), no. 1, 204–218. DOI: https://doi.org/10.1002/mma.5334

[22] N. H. Tuan, V. V. Au, and A. T. Nguyen, Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces, Arch. Math. (Basel) 118 (2022), no. 3, 305–314. DOI: https://doi.org/10.1007/s00013-022-01702-8

[23] N. H. Tuan, D. Baleanu, T. N. Thach, D. O’Regan, and N. H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math. 376 (2020), 112883, 25 pp. DOI: https://doi.org/10.1016/j.cam.2020.112883

[24] N. H. Tuan and T. Caraballo, On initial and terminal value problems for fractional nonclassical diffusion equations, Proc. Amer. Math. Soc. 149 (2021), no. 1, 143–161. DOI: https://doi.org/10.1090/proc/15131

[25] N. H. Tuan, M. Foondun, T. N. Thach, and R. Wang, On backward problems for stochastic fractional reaction equations with standard and fractional Brownian motion, Bull. Sci. Math. 179 (2022), 103158, 58 pp. DOI: https://doi.org/10.1016/j.bulsci.2022.103158

[26] N. H. Tuan, M. Kirane, and B. Bin-Mohsin, Filter regularization for final value fractional diffusion problem with deterministic and random noise, Comput. Math. Appl. 74 (2017), no. 6, 1340–1361. DOI: https://doi.org/10.1016/j.camwa.2017.06.014

[27] N. H. Tuan, T. N. Thach, and Y. Zhou, On a backward problem for two-dimensional time fractional wave equation with discrete random data, Evol. Equ. Control Theory 9 (2020), no. 2, 561 (page range not provided in source). DOI: https://doi.org/10.3934/eect.2020024

[28] N. H. Tuan, Y. Zhou, L. D. Long, and N. H. Can, Identifying inverse source for fractional diffusion equation with Riemann–Liouville derivative, Comput. Appl. Math. 39 (2020), 75. DOI: https://doi.org/10.1007/s40314-020-1103-2

[29] J. G. Wang, Y. B. Zhou, and T. Wei, Two regularization methods to identify a space-dependent source for the time fractional diffusion equation, Appl. Numer. Math. 68 (2013), 39–57. DOI: https://doi.org/10.1016/j.apnum.2013.01.001

[30] T. Wei, X. L. Li, and Y. S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Probl. 32 (2016), no. 8 (article/page number not provided in source). DOI: https://doi.org/10.1088/0266-5611/32/8/085003

[31] S. B. Yuste, L. Acedo, and K. Lindenberg, Reaction front in an A + B → C reaction-subdiffusion process, Phys. Rev. E 69 (2004), 036126. DOI: https://doi.org/10.1103/PhysRevE.69.036126

[32] S. B. Yuste and K. Lindenberg, Subdiffusion-limited reactions, Chem. Phys. 284 (2002), 169–180. DOI: https://doi.org/10.1016/S0301-0104(02)00546-3

[33] F. S. Ze and F. D. Hua, Instability analysis and regularization approximation to the forward/backward problems for fractional damped wave equations with random noise, Appl. Numer. Math. (2023), available online 4 January 2023.

Downloads

Published

2023 May 08

Issue

Section

Research Article

How to Cite

[1]
“Regularization of nonlocal pseudo-parabolic equation with random noise”, Electron. J. Appl. Math., vol. 1, no. 1, pp. 40–61, May 2023, doi: 10.61383/ejam.20231119.

Most read articles by the same author(s)