Regularization of nonlocal pseudo-parabolic equation with random noise
DOI:
https://doi.org/10.61383/ejam.20231119Keywords:
Fractional Tikhonov; Regularization; Conformable time derivative; Discrete data, random noise.Abstract
In this paper, we consider an inverse problem for a time-fractional diffusion equation with the inhomogeneous source. These problems have many applications in engineering such as image processing, geophysics, biology. We get the result in random case as follows:
• This problem is ill-posed.
• We have used the nonlocal condition, instead of the final time condition.
• Using the IFT regularization method, constructing the regularized solution, the a-priori choice rule for the regularization parameter is discussed and yields the corresponding convergence rate.
• A numerical experiment is presented to illustrate the results in theory.
References
R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004), pp 161-208. DOI: https://doi.org/10.1088/0305-4470/37/31/R01
R. Gorenflo, Mainardi, F., Scalas, E., Raberto, M., Fractional calculus and continuous-time finance III, in: The Diffusion Limit, Mathematical Finance, Springer-Verlag, New York, (2001) pp. 171-180. DOI: https://doi.org/10.1007/978-3-0348-8291-0_17
F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time finance II: the waiting-time distribution, Phys. A 287 (2000), pp 468-481. DOI: https://doi.org/10.1016/S0378-4371(00)00386-1
E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance, Phys. A 284 (2000),pp. 376-384. DOI: https://doi.org/10.1016/S0378-4371(00)00255-7
L. Sabatelli, S. Keating, J. Dudley, P. Richmond, Waiting time distributions in financial markets, Eur. Phys. J. B. 27 (2002),pp. 273-275. DOI: https://doi.org/10.1140/epjb/e20020151
S.B. Yuste, K. Lindenberg, Subdiffusion-limited reactions, Chem. Phys. 284 (2002), pp. 169-180. DOI: https://doi.org/10.1016/S0301-0104(02)00546-3
M.G. Hall, T.R. Barrick, From diffusion-weighted MRI to anomalous diffusion imaging, Magn. Reson. Med., 59, (2008), pp. 447-455. DOI: https://doi.org/10.1002/mrm.21453
S.B. Yuste, L. Acedo, K. Lindenberg, Reaction front in anA + B→C reaction-subdiffusion process, Phys. Rev. E. 69 (2004) 036126. DOI: https://doi.org/10.1103/PhysRevE.69.036126
B. Berkowitz, H. Scher, S.E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res. 36 (2000), pp. 149-158. DOI: https://doi.org/10.1029/1999WR900295
I.M. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einsteins Brownian motion, Chaos 15 (2005), pp. 1-7 DOI: https://doi.org/10.1063/1.1860472
N.H. Tuan, D. Baleanu, T.N. Thach, D. O'Regan, N.H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data. J. Comput. Appl. Math. 376 (2020), 112883, 25 pp.
N.H. Tuan, D. Baleanu, T.N. Thach, D. O’Regan, & N.H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data. Journal of Computational and Applied Mathematics, 376, (2020) 112883. DOI: https://doi.org/10.1016/j.cam.2020.112883
N.H. Tuan, & T. Caraballo, On initial and terminal value problems for fractional nonclassical diffusion equations, Proceedings of the American Mathematical Society, 149(1), (2021), pp. 143-161. DOI: https://doi.org/10.1090/proc/15131
N.H. Tuan, V.V. Au, A.T. Nguyen, Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces. Arch. Math. (Basel) 118 (2022), no. 3, pp. 305-314. DOI: https://doi.org/10.1007/s00013-022-01702-8
N.H. Tuan, M. Foondun, T.N. Thach, R. Wang, On backward problems for stochastic fractional reaction equations with standard and fractional Brownian motion. Bull. Sci. Math. 179, (2022), Paper No. 103158, 58 pp DOI: https://doi.org/10.1016/j.bulsci.2022.103158
L. Cavalier, Nonparametric statistical inverse problems, Inverse Probl. 24 (3) (2008) 034004. DOI: https://doi.org/10.1088/0266-5611/24/3/034004
N.H. Tuan, M. Kirane, B. Bin-Mohsin, Filter regularization for final value fractional diffusion problem with deterministic and random noise, Comput. Math. Appl. 74 (6) (2017),pp. 1340-1361. DOI: https://doi.org/10.1016/j.camwa.2017.06.014
N.H. Tuan, T.N. Thach, Y. Zhou, On a backward problem for two-dimensional time fractional wave equation with discrete random data, Evol. Equ. Control Theory, 9(2), (2020), 561.. DOI: https://doi.org/10.3934/eect.2020024
T.N. Thach, N.H. Tuan, P. T. M. Tam, M.N. Minh, & N.H. Can, (2019). Identification of an inverse source problem for time‐fractional diffusion equation with random noise, Mathematical Methods in the Applied Sciences, 42(1), (2019), pp. 204-218. DOI: https://doi.org/10.1002/mma.5334
N.H. Tuan, D. Baleanu, T.N. Thach, D. O’Regan, & N.H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, Journal of Computational and Applied Mathematics, 376, (2020), 112883. DOI: https://doi.org/10.1016/j.cam.2020.112883
N.H. Can, Y. Zhou, N.H. Tuan, T.N. Thach, Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data. Chaos Solitons Fractals 136 (2020), 109847, 14 pp. DOI: https://doi.org/10.1016/j.chaos.2020.109847
F.S. Ze, F.D. Hua, Instability analysis and regularization approximation to the forward/backward problems for fractional damped wave equations with random noise, Applied Numerical Mathematics, Available online 4 January 2023
F.D. Hua, J.R. Wei, The Regularized Solution Approximation of Forward/Backward Problems for a Fractional Pseudo-Parabolic Equation with Random Noise, Acta Mathematica Scientia, Volume 43, (2023) pp. 324-348 (2023), DOI: https://doi.org/10.1007/s10473-023-0118-3
H.T. Nguyen, D.L. Le, V.T. Nguyen, Regularized solution of an inverse source problem for a time fractional diffusion equation. Appl. Math. Model. (2016), 40, pp. 8244--8264. DOI: https://doi.org/10.1016/j.apm.2016.04.009
N.H. Tuan, Y. Zhou, L.D. Long, N.H Can, Identifying inverse source for fractional diffusion equation with Reimann-Liouville derivetive. Comput. Appl. Math. (2020), 39, 75. DOI: https://doi.org/10.1007/s40314-020-1103-2
L.D. Long, N.H. Luc,Y. Zhou, H.C. Nguyen, Identification of Source term for the time-fractional duffusion-wave equation by Fractional Tikhonov method, Mathematics, (2019), 7, 934. DOI: https://doi.org/10.3390/math7100934
T. Wei, X.L. Li, Y.S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. (2016), 32,~8. DOI: https://doi.org/10.1088/0266-5611/32/8/085003
J.G. Wang, Y.B. Zhou, T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math., (2013), 68, pp. 39--57. DOI: https://doi.org/10.1016/j.apnum.2013.01.001
D. Bianchi, A. Buccini, M. Donatelli, & S. Serra-Capizzano, S, Iterated fractional Tikhonov regularization, Inverse Problems, 31(5),(2015) 055005. DOI: https://doi.org/10.1088/0266-5611/31/5/055005
Y. Shuping, T.X. Xiang, N. Yan, Iterated fractional Tikhonov regularization method for solving the spherically symmetric backward time-fractional diffusion equation, Applied Numerical Mathematics 160 (2021), pp. 217-241. DOI: https://doi.org/10.1016/j.apnum.2020.10.008
I. Podlubny, Fractional Differential Equations, Academic Press, London, 1999.
K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (1) (2011), pp. 426-447. DOI: https://doi.org/10.1016/j.jmaa.2011.04.058
D. Bianchi, A. Buccini, M. Donatelli, Iterated fractional Tikhonov regularization, Inverse Probl. 31 (5) (2015) 055005. DOI: https://doi.org/10.1088/0266-5611/31/5/055005
D. Gerth, E. Klann, R. Ramlau, On fractional Tikhonov regularization, J. Inverse Ill-Posed Probl. , 23 (6) (2015), pp 611-625. DOI: https://doi.org/10.1515/jiip-2014-0050
I. Podlubny, M. Kacenak, Mittag-Leffler function, The MATLAB routine, available at http://www.mathworks.com/matlabcentral/fileexchange, 2012.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Yusuf Gurefe; Le Dinh Long (Corresponding Author); Devendra Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.