Multiplicity results for a Kirchhoff type equations with general potential
Keywords:
Palais-Smale condition, Morse index, Kirchhoff type equation, Variational methodsAbstract
This research we examine a Kirchhoff type equation in \(\mathbb{R}^{3}\) involving a potential that changes sign. By imposing appropriate conditions on \(V\) and making spectral assumptions, we successfully establish the existence of multiple solutions for this particular issue using variational methods.References
Y Shan, Morse index and multiple solutions for the asymptotically linear Schr¨odinger type equation. Nonlinear Anal, 89 (2013), 170–178, DOI:10. 1016/j. na. 2013. 05. 014. DOI: https://doi.org/10.1016/j.na.2013.05.014
Conley C, Zehnder E, Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm Pure Appl Math, 37 (1984), no. 2, 207–253, DOI: 10. 1002/cpa. 3160370204. DOI: https://doi.org/10.1002/cpa.3160370204
Y Shan, Existence and multiplicity results for nonlinear Schr¨odinger-Poisson equation with general potential. Frontiers of Mathematics in China. 15 (2020), no. 6, 1189–1200, DOI: 10. 1007/s11464-020-0881-6. DOI: https://doi.org/10.1007/s11464-020-0881-6
A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string. T. Am. Math. Soc, 348 (1996), NO. 1, 305-330. DOI: 10. 1090/S0002-9947-96-01532-2. DOI: https://doi.org/10.1090/S0002-9947-96-01532-2
M. Cavalcanti,V. Cavalcanti,J. A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6 (2001), no. 6, 701-730, DOI: 10. 57262/ade/1357140586. DOI: https://doi.org/10.57262/ade/1357140586
C. Chen,Y. Kuo,T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differential Equations, 250 (2011), no. 4, 1876-1908. DOI: 10. 1016/j. jde. 2010. 11. 017. DOI: https://doi.org/10.1016/j.jde.2010.11.017
P. D’Ancona,S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math, 108 (1992), no. 1, 247-262, DOI: 10. 1007/BF02100605. DOI: https://doi.org/10.1007/BF02100605
Rabinowitz P H, Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg Conf Ser Math, Providence: Amer Math Soc, 1986. DOI: https://doi.org/10.1090/cbms/065
Y Wu, S Liu, Existence and multiplicity of solutions for asymptotically linear Schr¨odinger–Kirchhoff equations. Nonlinear Analysis: Real World Applications. 26 (2015), 191–198, DOI: 10. 1016/j. nonrwa. 2015. 05. 010. DOI: https://doi.org/10.1016/j.nonrwa.2015.05.010
S Jiang, S L, Multiple solutions for Schrodinger–Kirchhoff equations with indefinite potential. Applied Mathematics Letters. 124 (2022), 107672, DOI: 10. 1016/j. aml. 2021. 107672. DOI: https://doi.org/10.1016/j.aml.2021.107672
H Liu, H Chen, Multiple solutions for an indefinite Kirchhoff-type equation with sign-changing potential. Electronic Journal of Differential Equations, 2015 (2015), no. 274, 1–9.
S Chen, C Wang, Existence of multiple nontrivial solutions for a Schr¨odinger-Poisson system. J Math Anal Appl, 411 (2014), no. 2, 787–793, DOI: 10. 1016/j. jmaa. 2013. 10. 008. DOI: https://doi.org/10.1016/j.jmaa.2013.10.008
L Xu, F Li, Q Xie, Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation. Qual. Theory Dyn. Syst. 23 (2024), no. 3, 135, DOI: 10. 1007/s12346-024-01001-3. DOI: https://doi.org/10.1007/s12346-024-01001-3
Kirchhoff G, Hensel K, Vorlesungen ¨uber mathematische Physik, Druck und Verlag von BG Teubner, 1883.
Lions J L, On some questions in boundary value problems of mathematical physics. North-Holland Mathematics Studies, North-Holland, 30 (1978), 284-346, DOI: 10. 1016/s0304-0208 (08)70870-2. DOI: https://doi.org/10.1016/S0304-0208(08)70870-3
Y Dong, Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations. Calc Var Partial Differential Equations, 38 (2010), no. 2, 75–109, DOI: 10. 1007/s00526-009-0279-5. DOI: https://doi.org/10.1007/s00526-009-0279-5
Y Long, Index Theory for Symplectic Paths with Applications. Progr Math, Basel: Birkhauser, 2002. DOI: https://doi.org/10.1007/978-3-0348-8175-3
Reed M, Simon B, Methods of Modern Mathematical Physics IV: Analysis of Operators, New York: Academic Press, 1978.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Linsong Chen, Tianqun Hu; Jian Zhou (Corresponding Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024 May 02
Published 2024 May 11