Existence of Common Coupled Fixed Points of Generalized Contractive Mappings in Ordered Multiplicative Metric Spaces
DOI:
https://doi.org/10.61383/ejam.20231341Keywords:
Coupled coincidence point, common coupled fixed point, w∗− compatible map, partially ordered set, multiplicative metric spaceAbstract
In order to generalize coupled fixed point results in the setup of partially ordered multiplicative metric spaces, we employing the concept of w∗- compatible mappings and generalized contractive condition and prove some coupled coincidence point and common coupled fixed points results. We also provide illustrative examples in support of our new results. Moreover, some applications to integral equations are presented. Our established results generalize, extend and unify various results in the existing literature.
References
A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435--1443. DOI: https://doi.org/10.1090/S0002-9939-03-07220-4
J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223--239. DOI: https://doi.org/10.1007/s11083-005-9018-5
R.P. Agarwal, M.A. El-Gebeily, D. O' Regan, Generalized contractions in partially ordered metric spaces, Applicable Anal. 87 (1) (2008), 109-116. DOI: https://doi.org/10.1080/00036810701556151
I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. Article ID 621469 (2010), 17 pages. DOI: https://doi.org/10.1155/2010/621469
L. Ciric, N. Cakic, M. Rajovic, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. Article ID 131294 (2008), 11 pages. DOI: https://doi.org/10.1155/2008/131294
Z. Drici, F.A. McRae, J.V. Devi, Fixed point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear Anal. 67 (2007), 641-647. DOI: https://doi.org/10.1016/j.na.2006.06.022
A.A. Harandi, H. Emami, A fixed point theorem for contractive type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. 72 (2010), 2238--2242. DOI: https://doi.org/10.1016/j.na.2009.10.023
D. O' Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008), 1241--1252. DOI: https://doi.org/10.1016/j.jmaa.2007.11.026
J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009), 3403--3410. DOI: https://doi.org/10.1016/j.na.2009.01.240
D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), 623--632. DOI: https://doi.org/10.1016/0362-546X(87)90077-0
E. Karapinar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comp. Math. Appl. 59 (2010), 3656--3668. DOI: https://doi.org/10.1016/j.camwa.2010.03.062
F. Sabetghadam, H.P. Masiha, A.H. Sanatpour, Some coupled fixed point theorems in cone metric space, Fixed Point Theory Appl. Article ID 125426 (2009), 8 pages. DOI: https://doi.org/10.1155/2009/125426
W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Comp. Math. Appl. 60 (2010), 2508--2515. DOI: https://doi.org/10.1016/j.camwa.2010.08.074
B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), 4508--4517. DOI: https://doi.org/10.1016/j.na.2010.02.026
T.G. Bhashkar, V. Lakshmikantham, Fixed point theorems in partially ordered cone metric spaces and applications, Nonlinear Anal. 65 (7) (2006), 825-832. DOI: https://doi.org/10.1016/j.na.2005.10.017
V. Lakshmikantham, Lj. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric space, Nonlinear Anal. 70 (2009), 4341--4349. DOI: https://doi.org/10.1016/j.na.2008.09.020
B. S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524-2531. DOI: https://doi.org/10.1016/j.na.2010.06.025
M. Abbas, M.A. Khan, S. Radenovic, Common coupled fixed point theorem in cone metric space for $w-$compatible mappings, Appl. Math. Comp. 217 (2010), 195-202. DOI: https://doi.org/10.1016/j.amc.2010.05.042
N. Hussain, M. Abbas, A. Azam, J. Ahmad, Coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory App. 2014:62 (2014), 21 pages. DOI: https://doi.org/10.1186/1687-1812-2014-62
M. Ozavsar, A. C. Cevikel, Fixed point of multiplicative contraction mappings on multiplicative metric space, arXiv:1205.5131v1 [matn.GN] (2012), 1--14.
A.E. Bashirov, E.M. Kurpnar, A. Ozyapc, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337 (2008), 36-48. DOI: https://doi.org/10.1016/j.jmaa.2007.03.081
A.E. Bashirov, E. Misirli, Y. Tandogdu, A. Ozyapici, On modeling with multiplicative differential equations, Appl. Math. J. Chin. Uni. 26 (4) (2011), 425-438, DOI: https://doi.org/10.1007/s11766-011-2767-6
L. Florack, H.V. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imag. Vision, 42 (1) (2012) 64-75. DOI: https://doi.org/10.1007/s10851-011-0275-1
X. He, M. Song, D. Chen, Common fixed points for weak commutative mappings on a multiplicative metric space, Fixed Point Theory Appl. 2014:48 (2014), 9 pages. DOI: https://doi.org/10.1186/1687-1812-2014-48
M. Abbas, B. Ali, Y.I. Suleiman, Common fixed points of locally contractive mappings in multiplicative metric spaces with application, Inter. J. Math. Math. Sci. Article ID 218683 (2015), 7 pages. DOI: https://doi.org/10.1155/2015/218683
O. Yamaod, W. Sintunavarat, Some fixed point results for generalized contraction mappings with cyclic ($alpha ,beta $) -admissible mapping in multiplicative metric spaces, J. Ineq. Appl. 2014:488 (2014), 15 pages. DOI: https://doi.org/10.1186/1029-242X-2014-488
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Zhong Zhao; Talat Nazir (Corresponding Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.