Dynamics of a two competing prey- one predator system with fear effect and anti-predator behaviour
DOI:
https://doi.org/10.61383/ejam.20242466Keywords:
Predator-prey model, fear factor, anti-predator behaviour, stability, uniform persistence, bifurcationAbstract
This paper examines the effect of fear and anti-predator behaviour in a two competing prey and one predator system. Here, one of the competing prey species is affected by the fear of predators while the other competing prey species shows anti-predator behaviour. Basic results on positivity, the boundedness of the solutions, local and global stability of the coexistence equilibrium point, uniform persistence, Hopf bifurcation and the nature of the limit cycle emerging through Hopf bifurcation are investigated. Numerical examples are provided to support our obtained results.References
[1] A.R. Holt, Z. G.Davies, C. Taylor, S. Staddon, Meta-analysis of the effects of predation on animal prey abundance: evidence from UK vertebrates, PLoS ONE 3 (2008), e2400. DOI: https://doi.org/10.1371/journal.pone.0002400
[2] R. K. Smith, A. S. Pullin, G. B. Stewart, W. J. Sutherland, Effectiveness of predator removal for enhancing bird populations, Conserv. Biol. 24 (2010), 820-829. DOI: https://doi.org/10.1111/j.1523-1739.2009.01421.x
[3] P. A. Abrams, Foraging time optimization and interactions on food webs, Am. Nat. 124 (1984), 80-96. DOI: https://doi.org/10.1086/284253
[4] P. A. Abrams, Strengths of indirect effects generated by optimal foraging, Oikos. 62 (1991), 167-176. DOI: https://doi.org/10.2307/3545262
[5] X. Wang, L. Zanette and X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol. 73 (2016), 1179-1204. DOI: https://doi.org/10.1007/s00285-016-0989-1
[6] D. Mukherjee, Study of fear mechanism predator-prey system in the presence of competitor for the prey, Ecol. Genet. Genom. 15 (2020), 100052. DOI: https://doi.org/10.1016/j.egg.2020.100052
[7] D. Mukherjee, Role of fear in predator-prey system with intraspecific competition, Math. Comput. Simul. 177 (2020), 263-275. DOI: https://doi.org/10.1016/j.matcom.2020.04.025
[8] L. Y. Zanette, A. F. White, M. C. Allen and C. Michael, Perceived predation risk reduces the number of offspring songbirds produce per year, Science. 334 (2011), 1398-1401. DOI: https://doi.org/10.1126/science.1210908
[9] S. Pal, S. Majhi, S. Mandal and N. Pal, Role of fear in a predator-prey model with Beddington-DeAngelis functional response, Z. Naturforsch. 74 (2019), 581-585. DOI: https://doi.org/10.1515/zna-2018-0449
[10] P. Panday, N. Pal, S. Samanta and J. Chattopadhyay, Stability and bifurcation analysis of a three-species food chain model with fear, Int. J. Bifurcat. Chaos. 28, (2018). DOI: https://doi.org/10.1142/S0218127418500098
[11] S. Sasmal and Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal Appl. Model. 64 (2018), 1-14. DOI: https://doi.org/10.1016/j.apm.2018.07.021
[12] X. Wang and X. Zou, Modelling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol. 79 (2017), 1-35. DOI: https://doi.org/10.1007/s11538-017-0287-0
[13] Y. Xia and S. Yuan, Survival analysis of a stochastic predator-prey model with prey refuge and fear effect, J. Biol. Dyns. 14 (2020), 871-892. DOI: https://doi.org/10.1080/17513758.2020.1853832
[14] H. Zhang, Y. Cai, S. Fu, W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput. 356 (2019), 328-337. DOI: https://doi.org/10.1016/j.amc.2019.03.034
[15] H. Qi and X. Meng, Threshold behaviour of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett. 113 (2021), 106846. DOI: https://doi.org/10.1016/j.aml.2020.106846
[16] K. Sarkar and S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol. Complex. 42 (2020), 100826. DOI: https://doi.org/10.1016/j.ecocom.2020.100826
[17] Q. Liu and D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett. 112 (2021), 106756. DOI: https://doi.org/10.1016/j.aml.2020.106756
[18] A. R. Ives, A. P. Dobson, Antipredator behaviour and the population dynamics of simple predator-prey systems, Am. Nat. 130 (1987), 431-447. DOI: https://doi.org/10.1086/284719
[19] B. Tang, Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behaviour, Chaos Soliton. Fract. 70 (2015), 58-68. DOI: https://doi.org/10.1016/j.chaos.2014.11.008
[20] X. Sun, Y. Li, Y. Xiao, A predator-prey model with prey population guided anti-predator behaviour, Int. J. Bifurcat. Chaos. 27 (2017), 1750099. DOI: https://doi.org/10.1142/S0218127417500997
[21] G. Birkhoff and G. C. Rota, Ordinary Differential Equation, Ginn and Co. Boston, 1982.
[22] V. Hutson, A theorem on average Lyapunov function, Monatsh Math. 98 (1984), 267-275. DOI: https://doi.org/10.1007/BF01540776
[23] V. Hutson, The existence of an equilibrium for permanent systems, Rocky Mountain J. Math. 20 (1990), 1033-1040. DOI: https://doi.org/10.1216/rmjm/1181073060
[24] Z. Qiu, Dynamics of a model for virulent phase T4, J. Biol. Syst. 16 (2008), 597-611. DOI: https://doi.org/10.1142/S0218339008002678
[25] W. M. Liu, Criterion of Hopf bifurcation without using eigenvalues, J. Math. Anal. Appl. 182 (1994), 250-256. DOI: https://doi.org/10.1006/jmaa.1994.1079
[26] Y. Cui, S. H. Liu, J. S. Tang, Y. M. Meng, Amplitude control of limit cycles in Langford system, Chaos Soliton. Fract. 42 (2009), 335-340. DOI: https://doi.org/10.1016/j.chaos.2008.12.005
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Debasis Mukherjee (Corresponding Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.