Geometry of solutions of the geometric curve flows in space
DOI:
https://doi.org/10.61383/ejam.20231340Keywords:
the Hasimoto surface, the shortening trajectory surface, the minimal trajectory surface, the \(\sqrt{\tau}\)-normal trajectory surfaceAbstract
In this study, we aim at investigating the geometry of surfaces corresponding to the geometry of solutions of the geometric curve flows in Euclidean 3-space \(\mathbb R^3\) considering the Frenet frame. In particular, we express some geometric properties and some characterizations of \(u\)-parameter curves and \(t\)-parameter curves of some trajectory surfaces including the Hasimoto surface, the shortening trajectory surface, the minimal trajectory surface, the \(\sqrt{\tau}\)-normal trajectory surface in \(\mathbb R^3\).
References
[1] N.H. Abdel-All, R.A. Hussien, and T. Youssef, Hasimoto surfaces, Life Science Journal 9 (2012), no. 3, 556--560.
[2] M.E. Aydin, A. Mihai, A.O. Ogrenmis, and M. Ergut, Geometry of the solutions of localized induction equation in the pseudo-Galilean space, Advances in Mathematical Physics 2015 (2015), no. Article ID 905978, 1--7.
[3] Q. Ding and Y.D. Wang, Geometric KdV flows, motions of curves and the third order system of the AKNS hierarchy, International Journal of Mathematics 22 (2011), no. 7, 1013--1029.
[4] Q. Ding, W. Wang, and Y.D. Wang, The Fukumoto-Moffatt's model in the vortex filament and generalized bi-Schr"odinger maps, Physics Letters A 375 (2011), no. 12.
[5] M. Erdogdu and M "Ozdemir, Geometry of Hasimoto surfaces in Minkowski 3-space, Mathematical Physics Analysis and Geometry 17 (2014), 169--181.
[6] M. Elzawy, Hasimoto surfaces in Galilean space $G_3$, Journal of the Egyptian Mathematical Society 29 (2021), no. Article ID 5, 1--9.
[7] M. Erdogdu and A. Yavuz, Differential geometric aspects of nonlinear Schr"odinger equation, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 (2021), no. 1, 510--521.
[8] K. Eren, New representation of Hasimoto surfaces with the modified orthogonal frame, Konuralp Journal of Mathematics 10 (2022), no. 1, 69--72.
[9] N. G"urb"uz, Hasimoto surfaces according to three classes of curve evolution with Darboux frame in Euclidean space, Gece Publishing (2018).
[10] H. Hasimoto, A soliton on a vortex filament, Journal of Fluid Mechanics 51 (1972), no. 3, 477--485.
[11] E. Hamouda, O. Moaaz, C. Cesarano, S. Askar, and A. Elsharkawy, Geometry of solutions of the quasi-vortex filament equation in Euclidean 3-space $E^3$, Mathematics 10 (2022), no. 6, 1--11.
[12] T.A. Ivey, Helices, Hasimoto surfaces and B"acklund transformations, Canadian Mathematical Bulletin 43 (2000), no. 4, 427–439.
[13] A. Kelleci, M. Bektas, and M. Erg"ut, The Hasimoto surface according to bishop frame, Adiyaman "Universitesi Fen Bilimleri Dergisi 9 (2019), no. 1, 13–22.
[14] S.G. Mohamed, Binormal motions of inextensible curves in de-sitter space $S^2,1$, Journal of the Egyptian Mathematical Society 25 (2017), no. 3, 313--318.
[15] N. G"urb"uz and D.W. Yoon, Hasimoto surfaces for two classes of curve evolution in Minkowski 3-space, Demonstratio Mathematica 53 (2020), no. 1, 277–284.
[16] N.E. G"urb"uz, R. Myrzakulov, and Z. Myrzakulova, Three anholonomy densities for three formulations with anholonomic coordinates with hybrid frame in $R_1^3$, Optik-International Journal for Light and Electron Optics 261 (2022), no. Article ID 169161, 1--17.
[17] F. Mart'in, A. Savas-Halilaj, and K. Smoczyk, On the topology of translating solitons of the mean curvature flow, Calculus of Variations and Partial Differential Equations 54 (2015), no. 3, 2853--2882.
[18] J. Minarvc'ik and M. Benev s, Nondegenerate homotopy and geometric flows, Homology, Homotopy and Applications 24 (2022), no. 2, 255--264.
[19] R.L. Ricca, Rediscovery of Da Rios equations, Nature 352 (2022), 561--562.
[20] C. Yu, H. Schumacher, and K. Crane, Repulsive curves, ACM Transactions on Graphics 40 (2021), no. 2, 1--21.
[21] R.A. Hussien and S.G. Mohamed, Generated surfaces via inextensible flows of curves in $R^3$, Journal of Applied Mathematics 2016 (2016), no. Article ID 6178961, 1--8.
[22] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, Discrete elastic rods, ACM Transactions on Graphics 27 (2008), no. 3, 1--12.
[23] J. Minarvc'ik and M. Benev s, Long-term behavior of curve shortening flow in $R^3$, SIAM Journal on Mathematical Analysis 52 (2020), no. 2, 1221--1231.
[24] S.J. Altschuler, Singularities of the curve shrinking flow for space curves, Journal of Differential Geometry 34 (1991), no. 2, 491--514.
[25] S.J. Altschuler and M. Grayson, Shortening space curves and flow through singularities, Journal of Differential Geometry 35 (1992), no. 2, 283--298.
[26] J. Minarvc'ik and M. Benev s, Minimal surface generating flow for space curves of non vanishing torsion, Discrete and Continuous Dynamical Systems Series B 27 (2022), no. 11, 6605--6617.
[27] M. Benev s, Miroslav Kolav r, and Daniel v sevv coviv c, Qualitative and numerical aspects of a motion of a family of interacting curves in space, SIAM Journal on Applied Mathematics 82 (2022), no. 2, 549--575.
[28] A.T. Ali, H.S.A. Aziz, and A.H. Sorour, Ruled surfaces generated by some special curves in Euclidean 3-space, Journal of the Egyptian Mathematical Society 21 (2013), no. 3, 285--294.
[29] Y. Fukumoto and T. Miyazaki, Three-dimensional distortions of a vortex filament with axial velocity, Journal of Fluid Mechanics 222 (1991), 369--416.
[30] Y. Fukumoto and H.K. Moffatt, Motion and expansion of a visous vortex ring, I. a higer-order asymptotic formula for the velocity, Journal of Fluid Mechanics 417 (2000), 1--45.
[31] Z.H. Zhao, S.P. Zhong, and X.J. Wan, Geometry of solutions of the geometric curve flows in space, Authorea (2022).
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Zehui Zhao; Shiping Zhong (Corresponding Author); Xinjie Wan

This work is licensed under a Creative Commons Attribution 4.0 International License.