Study of left rank-preserving complex matrices
DOI:
https://doi.org/10.61383/ejam.20242383Keywords:
complex matrix, rank of matrices, left (right) rank-preserving matrix, Binet-Cauchy's formulaAbstract
In this paper, we give the notions of left rank-preserving and right rank-preserving matrices and get three equivalent conditions of a left rank-preserving complex matrix. Furthermore, we obtain a kind of classification for the whole
References
[1] L. B. Beasley, Linear transformations on matrices: The invariance of rank-k matrices, Linear Algebra Appl., 3 (1970), no. 4, 407-427, https://doi.org/10.1016/0024-3795(70)90033-9. DOI: https://doi.org/10.1016/0024-3795(70)90033-9
[2] L. B. Beasley, Linear transformations which preserve fixed rank, Linear Algebra Appl., 40 (1981), 183-187, https://doi.org/10.1016/0024-3795(81)90148-8. DOI: https://doi.org/10.1016/0024-3795(81)90148-8
[3] L. B. Beasley, Rank-k preservers and preservers of sets of ranks, Linear Algebra Appl., 55 (1983), 11-17, https://doi.org/10.1016/0024-3795(83)90163-5. DOI: https://doi.org/10.1016/0024-3795(83)90163-5
[4] L. B. Beasley, Linear operators on matrices: The invariance of rank-k matrices, Linear Algebra Appl., 107 (1988), 161-167, https://doi.org/10.1016/0024-3795(88)90242-X. DOI: https://doi.org/10.1016/0024-3795(88)90242-X
[5] L. B. Beasley, and T. J. Laffey, Linear operators on matrices: The invariance of rank-k matrices, Linear Algebra Appl., 133 (1990), 175-184, https://doi.org/10.1016/0024-3795(90)90248-B. DOI: https://doi.org/10.1016/0024-3795(90)90248-B
[6] L. B. Beasley, and T. J. Laffey, Linear preservers of matrices of rank-2, Linear Multilinear Algebra, 48 (2001), No. 4, 319-331, https://doi.org/10.1080/03081080108818678. DOI: https://doi.org/10.1080/03081080108818678
[7] L. B. Beasley, and S. Z. Song, Primitive symmetric matrices and their preservers, Linear and multilinear algebra, 65 (2017), no. 1, 129-139, https://doi.org/10.1080/03081087.2016.1175414. DOI: https://doi.org/10.1080/03081087.2016.1175414
[8] G. Frobenius, Uber die darstellung der entlichen gruppen durch linear substitutionen [Over the representation of finite groups by linear substitution], S. B. Deutsch. Akad. Wiss. Berlin. 1897, 994-1015.
[9] S. Pierce, et al, A survey of linear preserver problems, Linear Multilinear Algebra, 33 (1992), 1-119. DOI: https://doi.org/10.1080/03081089208818176
[10] C. G. Cao, amd X. Zhang, Additive operators preserving idempotent matrices over fields and applications, Linear Algebra and its Applications, 248 (1996), 327-338, https://doi.org/10.1016/0024-3795(96)89195-6. DOI: https://doi.org/10.1016/0024-3795(96)89195-6
[11] R. Horn, C. K. Li, and N. K. Tsing, Linear operators preserving certain equivalence relations on matrices, SIAM Journal on Matrix Analysis and Applications, 12 (1991), no. 2, 195-204, https://doi.org/10.1137/0612015. DOI: https://doi.org/10.1137/0612015
[12] Z. X. Wan, Geometry of matrices: in memory of Professor L.K.Hua (1910-1985), World Scientic: Singapore, 1996, https://doi.org/10.1142/3080. DOI: https://doi.org/10.1142/9789812830234
[13] G. Dolinar, and P Semrl, Determinant preserving maps on matrix algebras, Linear Algebra and its Application, 348 (2002), no. 1-3, 189-192, https://doi.org/10.1016/S0024-3795(01)00578-X. DOI: https://doi.org/10.1016/S0024-3795(01)00578-X
[14] S. W. Liu, Linear maps preserving idempotence on matrix modules over principal ideal domains, Linear Algebra and its Applications, 258 (1997), 219-319, https://doi.org/10.1016/S0024-3795(96)00203-0. DOI: https://doi.org/10.1016/S0024-3795(96)00203-0
[15] X. M. Tang, Linear operators preserving adjoint matrix between matrix spaces, Linear Algebra and its Applications, 372 (2003), 287-293, https://doi.org/10.1016/S0024-3795(03)00532-9. DOI: https://doi.org/10.1016/S0024-3795(03)00532-9
[16] X. M. Tang, Additive rank-1 preservers between Hermitian matrix spaces and applications, Linear Algebra and its Applications, 395 (2005), 333-342, https://doi.org/10.1016/j.laa.2004.08.016. DOI: https://doi.org/10.1016/j.laa.2004.08.016
[17] X. M. Tang, and X. Zhang, Additive adjoint preservers between matrix spaces, Linear and Multilinear Algebra, 54 (2006), no. 4, 285-300, https://doi.org/10.1080/03081080500423858. DOI: https://doi.org/10.1080/03081080500423858
[18] L. P. Huang, Adjacency Preserving bijective maps of Hermitian matrices over any division ring with an involution, Acta Mathematica Sinica, 23 (2007), no.1, 95-102, https://doi.org/10.1007/s10114-005-0770-7. DOI: https://doi.org/10.1007/s10114-005-0770-7
[19] H. You, and Z. Y. Wang, K-Potence preserving maps without the linearity and surjectivity assumpyions, Linear Algebra and its Applications, 426 (2007), no. 1, 238-254, https://doi.org/10.1016/j.laa.2007.04.024. DOI: https://doi.org/10.1016/j.laa.2007.04.024
[20] H. You, and X. M. Tang, Additive preservers of rank-additivity on the space of symmetric and alternate matrices, Linear Algebra and its Applications, 380 (2004), 185-198, https://doi.org/10.1016/j.laa.2003.10.008. DOI: https://doi.org/10.1016/j.laa.2003.10.008
[21] M.Omladiˇ c, andP. ˇ Semrl, Additive mappings Preserving Operators of rank one, Linear Algebra and its Applications, 182 (1993), 239-256, https://doi.org/10.1016/0024-3795(93)90502-F. DOI: https://doi.org/10.1016/0024-3795(93)90502-F
[22] X. Zhang, Linear/Additive preservers of ranks 2 and 4 on alternate matrix spaces over fields, Algebra and its Applica tions, 392 (2004), 25-38, https://doi.org/10.1016/j.laa.2004.06.001. DOI: https://doi.org/10.1016/j.laa.2004.06.001
[23] X. Zhang, Idempotence preserving maps without the linearity and surjectivity assumptions, Linear Algebra and its Applications, 387 (2004), 162-187, https://doi.org/10.1016/j.laa.2004.02.011. DOI: https://doi.org/10.1016/j.laa.2004.02.011
[24] X. Zhang, X. M. Tang, and C. G. Cao, Preserver Problems on Spaces of Matrices, Beijing Science Press: Beijing, 2007.
[25] W. S. Qiu, Advanced algebra (second edition), Peking University Press: Beijing, 2003
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Zehui Zhao (Corresponding Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.