On the convergence result for pseudo-parabolic equations with fractional time derivatives

Authors

https://doi.org/10.61383/ejam.20242267

Keywords:

Fractional diffusion equation, Riemman--Liouville, convergence rate

Abstract

The main goal of this note is to investigate the convergence of solutions of the pseudo-parabolic equation with the Riemann--Liouville derivative when the order tends to \(1^-\). This paper is a continuation of the paper [L.D. Long, D. O'Regan, {Notes on Convergence Results for Parabolic Equations with Riemann-Liouville Derivatives}, Mathematics, 2022] where a special case of the theory below is presented (see Section 1 for a discussion).

References

R.R. Nigmatullin; The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Star. Sol. B, 133, pp. 425–430, 1986. DOI: https://doi.org/10.1002/pssb.2221330150

S. Kou; Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins, Ann. Appl. Stat., pp. 501–535, 2008. DOI: https://doi.org/10.1214/07-AOAS149

X. Wanga, L. Wanga, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl. 8, pp. 309—314, 2015. DOI: https://doi.org/10.22436/jnsa.008.04.03

C. Zhai, R. Jiang, Unique solutions for a new coupled system of fractional differential equations, Adv. Difference Equ., Paper No. 1, 12 pp, 2018. DOI: https://doi.org/10.1186/s13662-017-1452-3

C. Kou, H. Zhou, C. Li, Existence and continuation theorems of Riemann-Liouville type fractional differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, no. 4, 1250077, 12 pp, 2012. DOI: https://doi.org/10.1142/S0218127412500770

T.B. Ngoc, Y. Zhou, D. O’Regan, N.H. Tuan, On a terminal value problem for pseudo parabolic equations involving Riemann-Liouville fractional derivatives, Appl. Math. Lett. 106, 106373, 9 pp, 2020. DOI: https://doi.org/10.1016/j.aml.2020.106373

K. Sakamoto, M. Yamamoto; Initial value/boudary value problems for fractional diffusion- wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426–447, 2011. DOI: https://doi.org/10.1016/j.jmaa.2011.04.058

L.D. Long, H.D. Binh, D. Kumar, N.H. Luc, N.H. Can, Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative, Math. Methods Appl. Sci. 45, no. 10, pp. 6194–6216, 2022. DOI: https://doi.org/10.1002/mma.8166

L.D. Long, D. O’Regan, Notes on Convergence Results for Parabolic Equations with Riemann–Liouville Derivatives, Mathematics, Vol 10, Issue 21, Paper No. 4026, 13pp, 2022. DOI: https://doi.org/10.3390/math10214026

A.T. Nguyen, L.D. Long, D. Kumar, V.T. Nguyen, Regularization of a final value problem for a linear and nonlinear biharmonic equation with observed data in Lq space, AIMS Mathematics 7(12):pp. 20660–20683, 2022 DOI: https://doi.org/10.3934/math.20221133

I. Podlubny, Fractional differential equations, Academic Press, London, 1999.

H. Chen, M. Stynes, Blow-up of error estimates in time-fractional initial-boundary value problems, IMA Journal of Numerical Analysis, Volume 41, Issue 2, pp. 974—997, 2021. DOI: https://doi.org/10.1093/imanum/draa015

Downloads

Published

2024 Jun 17

How to Cite

[1]
D. O'Regan, “On the convergence result for pseudo-parabolic equations with fractional time derivatives”, Electron. J. Appl. Math., vol. 2, no. 2, pp. 32–38, Jun. 2024.

Issue

Section

Research Article
Received 2024 Jan 20
Accepted 2024 Jun 12
Published 2024 Jun 17

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.