A Delayed Eco-Epidemiological Prey–Predator Model and Its Discrete Version under the Weak Allee Effect

Authors

  • Kalyan Das Department of Interdisciplinary Sciences National Institute of Food Technology Entrepreneurship and Management, HSIIDC Industrial Estate, Kundli, Haryana, India Corresponding Author https://orcid.org/0000-0002-7812-9723
  • G.Ranjith Kumar Department of Mathematics, Anurag University, Venkatapur, Hyderabad, India https://orcid.org/0000-0002-9874-5697

DOI:

https://doi.org/10.61383/ejam.20253260

Keywords:

Allee-effect, Stability, Hopf-bifurcation, Intra-specific competition

Abstract

This study looks into a delayed predator–prey model that includes competition within the hunter species and a strong Allee effect in the prey population. The time delay is used as a bifurcation measure to look at how stable the coexistence equilibrium is. Our findings show that a Hopf splitting can happen when the delay goes over a certain level. The normal for \(m\) theory and center manifold method is used to find the direction and stability of the periodic solutions that are made. Number simulations add to the evidence for the mathematical findings.

References

[1] F. Courchamp et al., Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, UK, 2008. DOI: https://doi.org/10.1093/acprof:oso/9780198570301.001.0001

[2] E. Gonzalez-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator–prey model with Holling type III functional response and Allee effect on prey, Bull. Math. Biol., 73 (2011), 1378–1397. DOI: https://doi.org/10.1007/s11538-010-9577-5

[3] F. Hilker, Population collapse to extinction: the catastrophic combination of parasitism and Allee effect, J. Biol. Dyn., 4 (2010), 86–100. DOI: https://doi.org/10.1080/17513750903026429

[4] F. Hilker, M. Langlais, and H. Malchow, The Allee effect and infectious diseases: extinction, multistability and the disappearance of oscillations, Am. Nat., 173 (2009), 72–88. DOI: https://doi.org/10.1086/593357

[5] A. Morozov, S. Petrovskii, and B.L. Li, Spatiotemporal complexity of patchy invasion in a predator–prey system with the Allee effect, J. Theor. Biol., 238 (2006), 18–35. DOI: https://doi.org/10.1016/j.jtbi.2005.05.021

[6] P.J. Pal and T. Saha, Dynamical complexity of a ratio-dependent predator–prey model with strong additive Allee effect, Appl. Math., 146 (2015), 287–298. DOI: https://doi.org/10.1007/978-81-322-2547-8_29

[7] M. Sen and A. Morozov, Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect, Ecol. Complex., 11 (2012), 12–27. DOI: https://doi.org/10.1016/j.ecocom.2012.01.002

[8] M. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2001), 83–97. DOI: https://doi.org/10.1016/S0025-5564(01)00048-7

[9] S.R. Zhou, Y.F. Liu, and G. Wang, The stability of predator–prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23–31. DOI: https://doi.org/10.1016/j.tpb.2004.06.007

[10] L. Shi, H. Liu, Y. Wei, M. Ma, and J. Ye, The permanence and periodic solution of a competitive system with infinite delay, feedback control, and Allee effect, Adv. Differ. Equ., 2018 (2018), 400. DOI: https://doi.org/10.1186/s13662-018-1860-z

[11] H. Liu, Z. Li, M. Gao, H. Dai, and Z. Liu, Dynamics of a host–parasitoid model with Allee effect for the host and parasitoid aggregation, Ecol. Complex., 6 (2009), 337–345. DOI: https://doi.org/10.1016/j.ecocom.2009.01.003

[12] J. Wang, J. Shi, and J. Wei, Predator–prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291–331. DOI: https://doi.org/10.1007/s00285-010-0332-1

[13] J. Wang, J. Shi, and J. Wei, Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey, J. Differ. Equ., 251 (2011), 1276–1304. DOI: https://doi.org/10.1016/j.jde.2011.03.004

[14] Y. Cai, C. Zhao, W. Wang, and J. Wang, Dynamics of a Leslie–Gower predator–prey model with additive Allee effect, Appl. Math. Model., 39 (2015), 2092–2106. DOI: https://doi.org/10.1016/j.apm.2014.09.038

[15] C. Li and H. Zhu, Canard cycles for predator–prey systems with Holling types of functional response, J. Differ. Equ., 254 (2013), 879–910. DOI: https://doi.org/10.1016/j.jde.2012.10.003

[16] Y. Li and D. Xiao, Bifurcations of a predator–prey system of Holling and Leslie types, Chaos Solitons Fractals, 34 (2007), 606–620. DOI: https://doi.org/10.1016/j.chaos.2006.03.068

[17] Y. Qu and J. Wei, Bifurcation analysis in a time-delay model for prey–predator growth with stage structure, Nonlinear Dyn., 49 (2007), 285–294. DOI: https://doi.org/10.1007/s11071-006-9133-x

[18] J.P. Tripathi, S. Tyagi, and S. Abbas, Global analysis of a delayed density-dependent predator–prey model with Crowley–Martin functional response, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 45–69. DOI: https://doi.org/10.1016/j.cnsns.2015.06.008

[19] J. Ylikarjula, S. Alaja, J. Laakso, and D. Tesar, Effects of patch number and dispersal patterns on population dynamics and synchrony, J. Theor. Biol., 207 (2000), 377–387. DOI: https://doi.org/10.1006/jtbi.2000.2181

[20] X. Wang and J. Wei, Dynamics in a diffusive predator–prey system with strong Allee effect and Ivlev-type functional response, J. Math. Anal. Appl., 422 (2015), 1447–1462. DOI: https://doi.org/10.1016/j.jmaa.2014.09.051

[21] Z. Ma, H. Tang, S. Wang, and T. Wang, Bifurcation of a predator–prey system with generation delay and habitat complexity, J. Korean Math. Soc., 55 (2018), 43–58.

[22] B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction, Nat. Resour. Model., 3 (1989), 481–538. DOI: https://doi.org/10.1111/j.1939-7445.1989.tb00119.x

[23] M.A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms, Theor. Popul. Biol., 43 (1993), 141–158. DOI: https://doi.org/10.1006/tpbi.1993.1007

[24] L. Berec, E. Angulo, and F. Courchamp, Multiple Allee effects and population management, Trends Ecol. Evol., 22 (2007), 185–191. DOI: https://doi.org/10.1016/j.tree.2006.12.002

[25] F. Courchamp, T. Clutton-Brock, and B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405–410. DOI: https://doi.org/10.1016/S0169-5347(99)01683-3

[26] P.A. Stephens and W.J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401–405. DOI: https://doi.org/10.1016/S0169-5347(99)01684-5

[27] B.D. Hassard, N.D. Kazarinoff, and Y.H. Wan, Theory and Application of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.

[28] C. Binaca, M. Ferrara, and L. Guerrini, The Cai model with time delay: existence of periodic solutions and asymptotic analysis, Appl. Math. Inf. Sci., 7 (2013), 21–27. DOI: https://doi.org/10.12785/amis/070103

[29] X. Liu and D. Xiao, Complex dynamic behaviour of a discrete-time predator–prey system, Chaos Solitons Fractals, 32 (2007), 80–94. DOI: https://doi.org/10.1016/j.chaos.2005.10.081

[30] R. Lopez-Ruiz and D. Fournier-Prunaret, Complex behaviour in a discrete coupled logistic model for the symbiotic interaction of two species, 2004. DOI: https://doi.org/10.3934/mbe.2004.1.307

[31] A.E. Elsadany, H.A. El-Metawally, E.M. Elabbasy, and H.N. Agiza, Chaos and bifurcation of a nonlinear discrete prey–predator system, Comput. Ecol. Softw., 2 (2012), 169–180.

[32] A.E. Elsadany, Dynamical complexities in a discrete-time food chain, Comput. Ecol. Softw., 2 (2012), 124–139.

[33] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2011. DOI: https://doi.org/10.1007/978-1-4419-7646-8

[34] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993.

[35] S. Elaydi, An Introduction to Difference Equations (3rd ed.), Springer, 2005.

[36] R.E. Mickens, Difference Equations: Theory and Applications, Van Nostrand Reinhold, 1990.

Downloads

Published

2025 Jun 23

Issue

Section

Research Article

How to Cite

[1]
“A Delayed Eco-Epidemiological Prey–Predator Model and Its Discrete Version under the Weak Allee Effect”, Electron. J. Appl. Math., vol. 3, no. 2, pp. 49–64, Jun. 2025, doi: 10.61383/ejam.20253260.

Similar Articles

You may also start an advanced similarity search for this article.