Finite Time Blow-Up for an Inhomogeneous Wave Equation with Riemann--Liouville Fractional Integral

Authors

DOI:

https://doi.org/10.61383/ejam.202532105

Keywords:

Finite time blow-up, Inhomogeneous wave equation, Riemann-Liouville fractional integral, Strauss exponent

Abstract

This paper is devoted to the study of the effect of an inhomogeneity \( \omega(x) \) on the blow-up phenomena for the wave equation
\[
  u_{tt} - \triangle u =  I_{0^{+}}^{\alpha}(|u|^{p}) + \omega(x), \quad
  (t,x) \in (0,T) \times \mathbb{R}^{N},
\]where \( N \ge 1 \), \( p > 1 \), \( 0 \le \alpha < 1 \), and \( \omega(x) \) satisfies \( \int_{\mathbb{R}^{N}} \omega(x)\,dx > 0 .\) Specifically, by the method of cut-functions, this paper first proves that any non-trivial solution blows up in finite time under \( 0 < \alpha < 1 \), and later proves that any non-trivial solution blows up in finite time under \( \alpha = 0 \), \( 2 \le N \le 4 \), and \( p \) being the Strauss exponent.

References

[1] J. B. Hartle and S. W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983), no. 12, 2960–2975, DOI 10.1103/PhysRevD.28.2960. MR0723174. DOI: https://doi.org/10.1103/PhysRevD.28.2960

[2] M. V. Klibanov, Global convexity in a three-dimensional inverse acoustic problem, SIAM J. Math. Anal. 28 (1997), no. 6, 1371–1388, DOI 10.1137/S0036141095292582. MR1456081. DOI: https://doi.org/10.1137/S0036141096297364

[3] W. Chen and A. Palmieri, Blow-up result for a semilinear wave equation with a nonlinear memory term, in Mathematics without Boundaries, Springer International Publishing, 2021, 77–97, DOI 10.1007/978-3-030-XXXXX-X_5. DOI: https://doi.org/10.1007/978-3-030-61346-4_4

[4] W. A. Strauss, Nonlinear Wave Equations, CBMS Regional Conf. Ser. in Math., vol. 73, Amer. Math. Soc., Providence, RI, 1989. DOI: https://doi.org/10.1090/cbms/073

[5] H. Jiao and Z. Zhou, An elementary proof of the blow-up for semilinear wave equations in high space dimensions, J. Differ. Equ. 189 (2003), no. 2, 355–365, DOI 10.1016/S0022-0396(03)00191-2. DOI: https://doi.org/10.1016/S0022-0396(02)00041-4

[6] B. T. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal. 231 (2006), no. 2, 361–374, DOI 10.1016/j.jfa.2005.06.013. DOI: https://doi.org/10.1016/j.jfa.2005.03.012

[7] Y. Zhou, Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B 28 (2007), no. 2, 205–212, DOI 10.1007/s11401-007-0224-8. DOI: https://doi.org/10.1007/s11401-005-0205-x

[8] Y. Zhou and W. Han, Life-span of solutions to critical semilinear wave equations, Commun. Partial Differ. Equ. 39 (2014), no. 3, 439–451, DOI 10.1080/03605302.2013.841124. DOI: https://doi.org/10.1080/03605302.2013.863914

[9] Q. S. Zhang, A new critical behavior for nonlinear wave equations, J. Comput. Anal. Appl. 2 (2000), no. 4, 277–292. MR1816012. DOI: https://doi.org/10.1023/A:1010156504128

[10] M. Jleli, B. Samet, and C. Vetro, A blow-up result for a nonlinear wave equation on manifolds: the critical case, Appl. Anal. 102 (2023), no. 5, 1463–1472, DOI 10.1080/00036811.2021.2006237. DOI: https://doi.org/10.1080/00036811.2021.1986026

[11] A. G. Kartsatos and V. V. Kurta, On blow-up results for solutions of inhomogeneous evolution equations and inequalities, J. Math. Anal. Appl. 290 (2004), 76–85, DOI 10.1016/j.jmaa.2003.09.022. DOI: https://doi.org/10.1016/j.jmaa.2003.09.002

[12] M. Jleli, B. Samet, and C. Vetro, Large time behavior for inhomogeneous damped wave equations with nonlinear memory, Symmetry (Basel) 12 (2020), no. 10, Article 1609, DOI 10.3390/sym12101609. DOI: https://doi.org/10.3390/sym12101609

[13] A. Alqahtani, M. Jleli, and B. Samet, Finite-time blow-up for inhomogeneous parabolic equations with nonlinear memory, Complex Var. Elliptic Equ. 66 (2021), no. 1, 84–93, DOI 10.1080/17476933.2020.1745013. DOI: https://doi.org/10.1080/17476933.2019.1704280

[14] L. Kirianova, Wave equation with fractional derivative and stationary inhomogeneities, Math. Model. Syst. Anal. 28 (2023), 1–10, DOI 10.1051/mmsa/2023001. DOI: https://doi.org/10.1063/5.0103617

[15] M. Jleli and B. Samet, New critical behaviors for semilinear wave equations and systems with linear damping terms, Math. Methods Appl. Sci. 43 (2020), 1–11, DOI 10.1002/mma.6400.

[16] M. Borikhanov and B. T. Torebek, Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation, Appl. Math. Lett. 134 (2022), 108366, DOI 10.1016/j.aml.2022.108366. DOI: https://doi.org/10.1016/j.aml.2022.108366

[17] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.

[18] S. I. Pokhozhaev, Nonexistence of global solutions of nonlinear evolution equations, Differ. Equ. 49 (2013), 599–606, DOI 10.1134/S0012266113050102. DOI: https://doi.org/10.1134/S001226611305008X

Downloads

Published

2025 Jun 22

Issue

Section

Research Article

How to Cite

[1]
“Finite Time Blow-Up for an Inhomogeneous Wave Equation with Riemann--Liouville Fractional Integral”, Electron. J. Appl. Math., vol. 3, no. 2, pp. 38–48, Jun. 2025, doi: 10.61383/ejam.202532105.