New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method
DOI:
https://doi.org/10.61383/ejam.20231130Keywords:
New version of the trial equation method, nonlinear partial differential equations, Korteweg-de Vries (KdV) equation, solitary wave soliton solutionsAbstract
New solitary wave solutions for the Korteweg-de Vries (KdV) equation by a new version of the trial equation method are attained. Proper transformation reduces the Korteweg-de Vries (KdV) equation to a quadratic ordinary differential equation that is fully integrated using the new version trial equation approach. The family of solitary wave solutions of the reduced equation ensures a combined expression for the Korteweg-de Vries (KdV) equation, which contains exact solutions derived in recent years using different integration methods. The analytic solution of the reduced equation permits to find exact solutions for the Korteweg-de Vries (KdV) equation, providing a variety of new solitary wave solutions that have not been reported before.
References
[1] M. A. Abdou, Further improved f-expansion and new exact solutions for nonlinear evolution equations, Nonlinear Dyn. 52 (2008), 277–288. DOI: https://doi.org/10.1007/s11071-007-9277-3
[2] M. A. Akbar, N. H. M. Ali, and S. T. Mohyud-Din, The modified alternative (g′/g)-expansion method to nonlinear evolution equation: application to the (1+1)dimensional drinfel’d-sokolov-wilson equation, SpringerPlus 327 (2013), 2–16. DOI: https://doi.org/10.1186/2193-1801-2-327
[3] A. Bekir and O. Unsal, Analytic treatment of nonlinear evolution equations using first integral method, Pramana-J. Phys. 79 (2012), no. 1, 3–17. DOI: https://doi.org/10.1007/s12043-012-0282-9
[4] S. T. Demiray, Y. Pandir, and H. Bulut, New solitary wave solutions of maccari system, Ocean Eng. 103 (2015), 153–159. DOI: https://doi.org/10.1016/j.oceaneng.2015.04.037
[5] S. T. Demiray, Y. Pandir, and H. Bulut, New soliton solutions for sasa-satsuma equation, Waves Random Complex Media 25 (2015), no. 3, 417–418. DOI: https://doi.org/10.1080/17455030.2015.1042945
[6] M. M. El-Borai, H. M. El-Owaidy, H. M. Ahmed, A. H. Arnous, S. Moshokoa, A. Biswas, and M. Belic, Topological and singular soliton solution to kundu-eckhaus equation with extended kudryashov’s method, Optik 128 (2017), 57–62. DOI: https://doi.org/10.1016/j.ijleo.2016.10.011
[7] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Muira, Method for solving the korteweg-devries equation, Phys. Rev. Lett. 19 (1967), 1095–1097. DOI: https://doi.org/10.1103/PhysRevLett.19.1095
[8] C. A. G´omez, A. Jhangeer, H. Rezazadeh, R. A. Talarposhti, and A. Bekir, Closed form solutions of the perturbed gerdjikov-ivanov equation with variable coefficients, East Asian J. Appl. M 11 (2021), no. 1, 207–218. DOI: https://doi.org/10.4208/eajam.230620.070920
[9] S. Guo and Y. Zhou, The extended (g′/g)-expansion method and its applications to the whitham-broer-kaup-like equations and coupled hirota-satsuma kdv equations, Appl. Math. Comput. 215 (2010), 3214–3221. DOI: https://doi.org/10.1016/j.amc.2009.10.008
[10] Y. Gurefe, E. Misirli, A. Sonmezoglu, and M. Ekici, Extended trial equation method to generalized nonlinear partial differential equations, Appl. Math. Comput. 219 (2013), no. 10, 5253–5260. DOI: https://doi.org/10.1016/j.amc.2012.11.046
[11] Y. Gurefe, A. Sonmezoglu, and E. Misirli, Application of trial equation method to the nonlinear partial differential equations arising in mathematical physics, Pramana-J. Phys. 77 (2011), no. 6, 1023–1029. DOI: https://doi.org/10.1007/s12043-011-0201-5
[12] Y. Gurefe, A. Sonmezoglu, and E. Misirli, Application of an irrational trial equation method to high dimensional nonlinear evolution equations, J. Adv. Math. Stud. 5 (2012), no. 1, 41–47.
[13] J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Soliton Fract. 30 (2006), 700–708. DOI: https://doi.org/10.1016/j.chaos.2006.03.020
[14] J. Hietarinta, Hirota’s bilinear method and its generalization, Int. J. Mod. Phys. A 12 (1997), no. 1, 43–51. DOI: https://doi.org/10.1142/S0217751X97000062
[15] X. J. Lai, J. F. Zhang, and S. H. Mei, Application of the weierstrass elliptic expansion method to the long-wave and short-wave resonance interaction system, Z. Naturforsch. A 63 (2008), 273–279. DOI: https://doi.org/10.1515/zna-2008-5-606
[16] C. S. Liu, Trial equation method and its applications to nonlinear evolution equations, Phys. Sinica 54 (2005), no. 6, 2505–2509. DOI: https://doi.org/10.7498/aps.54.2505
[17] C. S. Liu, Trial equation to solve the exact solutions for two kinds of kdv equations with variable coeffients, Acta Phys. Sinica 54 (2005), 4506–4510. DOI: https://doi.org/10.7498/aps.54.4506
[18] C. S. Liu, A new trial equation method and its applications, Commun. Theor. Phys. 45 (2006), no. 3, 395–397. DOI: https://doi.org/10.1088/0253-6102/45/3/003
[19] C. S. Liu, Trial equation method for nonlinear evolution equations with rank inhomogeneous: mathematical discussions and applications, Commun. Theor. Phys. 45 (2006), no. 2, 219–223. DOI: https://doi.org/10.1088/0253-6102/45/2/005
[20] C. S. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun. 181 (2010), no. 2, 317–324. DOI: https://doi.org/10.1016/j.cpc.2009.10.006
[21] W. X. Ma and B. Fuchssteiner, Explicit and exact solutions to a kolmogrov-petrovskipiskunov equation, Int. J. Nonlinear Mech. 31 (1996), no. 3, 329–338. DOI: https://doi.org/10.1016/0020-7462(95)00064-X
[22] W. X. Ma, Y. Zhang, and Y. Tang, Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms, East Asian J. Appl. M 10 (2020), no. 4, 732–745. DOI: https://doi.org/10.4208/eajam.151019.110420
[23] W. Malfliet and W. Hereman, The tanh method: I exact solutions of nonlinear evolution and wave equations, Phys. Scripta 54 (1996), 563–568. DOI: https://doi.org/10.1088/0031-8949/54/6/003
[24] Y. Pandir, Symmetric fibonacci function solutions of some nonlinear partial differential equations, Appl. Math. Inf. Sci. 8 (2014), 2237–2241. DOI: https://doi.org/10.12785/amis/080518
[25] Y. Pandir, A new type of the generalized f-expansion method and its application to sine-gordon equation, Celal Bayar Univ. J. Sci. 13 (2017), no. 3, 647–650. DOI: https://doi.org/10.18466/cbayarfbe.306899
[26] Y. Pandir, S. T. Demiray, and H. Bulut, A new approach for some nldes with variable coefficients, Optik 127 (2016), 11183–11190. DOI: https://doi.org/10.1016/j.ijleo.2016.08.019
[27] Y. Pandir and A. Ekin, Dynamics of combined soliton solutions of unstable nonlinear schrodinger equation with new version of the trial equation method, Chinese J. Physics 67 (2020), 534–543. DOI: https://doi.org/10.1016/j.cjph.2020.08.013
[28] Y. Pandir, Y. Gurefe, U. Kadak, and E. Misirli, Classifications of exact solutions for some nonlinear partial differential equations with generalized evolution, Abstr. Appl. Anal. 2012 (2012), 1–16. DOI: https://doi.org/10.1155/2012/478531
[29] Y. Pandir, Y. Gurefe, and E. Misirli, Classification of exact solutions to the generalized kadomtsev-petviashvili equation, Phys. Scr. 87 (2013), no. 2, 1–12. DOI: https://doi.org/10.1088/0031-8949/87/02/025003
[30] Y. Pandir, Y. Gurefe, and E. Misirli, A multiple extended trial equation method for the fractional sharma-tasso-olver equation, AIP Conf. Proc., vol. 1558, 2013, p. 1927. DOI: https://doi.org/10.1063/1.4825910
[31] Y. Pandir, A. Sonmezoglu, H. H. Duzgun, and N. Turhan, Exact solutions of nonlinear schr¨odinger’s equation by using generalized kudryashov method, AIP Conf. Proc., vol. 1648, 2015, p. 370004. DOI: https://doi.org/10.1063/1.4912593
[32] Y. Pandir and N. Turhan, A new version of the generalized f-expansion method and its applications, AIP Conf. Proc., vol. 1798, 2017, p. 020122. DOI: https://doi.org/10.1063/1.4972714
[33] L. K. Ravi, S. S. Ray, and S. Sahoo, New exact solutions of coupled boussinesqburgers equations by exp-function method, J. Ocean Eng. Sci 2 (2017), 34–46. DOI: https://doi.org/10.1016/j.joes.2016.09.001
[34] M. Shakeel and S. T. Mohyud-Din, New (g′/g)-expansion method and its application to the zakharov-kuznetsov benjamin-bona-mahony (KK-BBM) equation, J. Assoc. Arab Univ. Basic Appl. Sci. 18 (2015), no. 1, 66–81. DOI: https://doi.org/10.1016/j.jaubas.2014.02.007
[35] S. Shikuo, F. Zuntao, L. Shida, and Z. Qiang, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289 (2001), 69–74. DOI: https://doi.org/10.1016/S0375-9601(01)00580-1
[36] Y. A. Tandogan, Y. Pandir, and Y. Gurefe, Solutions of the nonlinear differential equations by use of modified kudryashov method, Turkish J. Math. Comput. Sci. 1 (2013), 54–60.
[37] K. Yang and J. Liu, The extended f-expansion method and exact solutions of nonlinear pdes, Chaos, Solitons Fract. 22 (2014), 111–121. DOI: https://doi.org/10.1016/j.chaos.2003.12.069
[38] V. E. Zakharov and L. D. Faddeev, Korteweg-de vries equation: A completely integrable hamiltonian system, Funct. Anal. Appl. 5 (1971), 280–287. DOI: https://doi.org/10.1007/BF01086739
[39] H. A. Zedan, New approach for tanh and extended-tanh methods with applications on hirota-satsuma equations, Comput. Appl. Math. 28 (2009), no. 1, 1–14. DOI: https://doi.org/10.1590/S1807-03022009000100001
[40] J. Zhang, F. Jiang, and X. Zhao, An improved (g′/g)-expansion method for solving nonlinear evolution equations, Int. J. Comput. Math. 87 (2010), no. 8, 1716–1725. DOI: https://doi.org/10.1080/00207160802450166
[41] Z. Y. Zhang, Jacobi elliptic function expansion method for the modified korteweg-de vries-zakharov-kuznetsov and the hirota equations, Rom. J. Phys. 60 (2015), no. 9–10, 1384–1394.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Yusuf Pandir (Corresponding Author); Ali Ekin

This work is licensed under a Creative Commons Attribution 4.0 International License.