Well-Posedness Results for a Class of Nonlinear Reaction-Diffusion Equations with Memory

Authors

  • Ho Duy Binh Division of Applied Mathematics, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
  • Nguyen Duc Phuong Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Viet Nam Corresponding Author https://orcid.org/0000-0003-3779-197X
  • Vo Viet Tri Department of Applied Mathematics, Thu Dau Mot University, Binh Duong province, Vietnam

DOI:

https://doi.org/10.61383/ejam.20231125

Keywords:

nonlinear heat equation, reaction-diffusion equations, memory term, blow-up

Abstract

In this paper, we are interested to study the initial value problem for nonlinear heat equation with memory.  For our problem, we show that the local existence theory related to the finite time blow-up is also obtained for the problem with logarithmic nonlinearity. We also obtain the blowup continuation property of the mild solution. The principal techniques based on some Sobolev embeddings with \(L^p\) spaces.  

References

[1] G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations, SIAM J. Numer. Anal. 55 (2017), no. 2, 472–495. DOI: https://doi.org/10.1137/15M1033952

[2] J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and heat equations, Trans. Amer. Math. Soc. 352 (1999), no. 1, 285–310. DOI: https://doi.org/10.1090/S0002-9947-99-02528-3

[3] J. M. Arrieta, A. N. Carvalho, and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differential Equations 156 (1999), 376–406. DOI: https://doi.org/10.1006/jdeq.1998.3612

[4] V. Barbu and S. Sritharan, Navier–Stokes equation with hereditary viscosity, Z. Angew. Math. Phys. 54 (2003), 449–461. DOI: https://doi.org/10.1007/s00033-003-1087-y

[5] J. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D 52 (1995), 5576–5587. DOI: https://doi.org/10.1103/PhysRevD.52.5576

[6] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304. DOI: https://doi.org/10.1007/BF02790212

[7] T. Caraballo and J. Real, Attractors for 2D Navier–Stokes models with delays, J. Differential Equations 205 (2004), 271–297. DOI: https://doi.org/10.1016/j.jde.2004.04.012

[8] T. Cazenave, F. Dickstein, and F. B. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal. 68 (2008), no. 4, 862–874. DOI: https://doi.org/10.1016/j.na.2006.11.042

[9] C. M. Chen and V. Thomée, The lumped mass finite element method for a parabolic problem, J. Austral. Math. Soc. Ser. B 26 (1985), no. 3, 329–354. DOI: https://doi.org/10.1017/S0334270000004549

[10] H. Chen, P. Luo, and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl. 422 (2015), no. 1, 84–98. DOI: https://doi.org/10.1016/j.jmaa.2014.08.030

[11] Y. Chen and R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal. 192 (2020), 111664, 39 pages. DOI: https://doi.org/10.1016/j.na.2019.111664

[12] M. Conti, S. Gatti, M. Grasselli, and V. Pata, Two-dimensional reaction-diffusion equations with memory, Quart. Appl. Math. 68 (2010), no. 4, 607–643. DOI: https://doi.org/10.1090/S0033-569X-2010-01167-7

[13] M. D’Abbico, The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal. 95 (2014), 130–145. DOI: https://doi.org/10.1016/j.na.2013.09.006

[14] B. de Andrade and A. Viana, Integro-differential equations with applications to a plate equation with memory, Math. Nachr. (2016), 1–14 (volume/issue not provided in source).

[15] B. de Andrade and A. Viana, Abstract Volterra integro-differential equations with applications to parabolic models with memory, Math. Ann. 369 (2017), 1131–1175. DOI: https://doi.org/10.1007/s00208-016-1469-z

[16] B. de Andrade and A. Viana, On a fractional reaction-diffusion equation, Z. Angew. Math. Phys. 68 (2017), 11 pages. DOI: https://doi.org/10.1007/s00033-017-0801-0

[17] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. DOI: https://doi.org/10.1016/j.bulsci.2011.12.004

[18] H. Engler, Global regular solutions for the dynamic antiplane shear problem in nonlinear viscoelasticity, Math. Z. 202 (1989), no. 2, 251–259. DOI: https://doi.org/10.1007/BF01215257

[19] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998.

[20] M. Fabrizio and S. Polidoro, Asymptotic decay for some differential systems with fading memory, Appl. Anal. 81 (2002), 1245–1264. DOI: https://doi.org/10.1080/0003681021000035588

[21] S. Gatti, A. Miranville, V. Pata, and S. Zelik, Continuous families of exponential attractors for singularly perturbed equations with memory, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 2, 329–366. DOI: https://doi.org/10.1017/S0308210509000365

[22] Y. Giga, A bound for global solutions of semilinear heat equations, Commun. Math. Phys. 103 (1986), no. 3, 415–421. DOI: https://doi.org/10.1007/BF01211756

[23] M. G. Grillakis, Regularity and asymptotic behavior of the wave equation with critical nonlinearity, Ann. Math. 132 (1990), 485–509. DOI: https://doi.org/10.2307/1971427

[24] A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl. 382 (2011), 748–760. DOI: https://doi.org/10.1016/j.jmaa.2011.04.079

[25] M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal. 31 (1968), 113–126. DOI: https://doi.org/10.1007/BF00281373

[26] M. L. Heard and S. M. Rankin, A semilinear parabolic Volterra integro-differential equation, J. Differential Equations 71 (1988), no. 2, 201–233. DOI: https://doi.org/10.1016/0022-0396(88)90023-X

[27] E. Hewitt and K. Stromberg, Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable, Springer-Verlag, Berlin, 1969 (second printing corrected).

[28] M. A. Jorge Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type, IMA J. Appl. Math. 78 (2013), 1130–1146. DOI: https://doi.org/10.1093/imamat/hxs011

[29] M. Kafini and S. Messaoudi, Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Appl. Anal. 99 (2020), no. 3, 530–547. DOI: https://doi.org/10.1080/00036811.2018.1504029

[30] J. Kemppainen, J. Siljander, V. Vergara, and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in R^d, Math. Ann. 366 (2016), 941–979. DOI: https://doi.org/10.1007/s00208-015-1356-z

[31] V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Differential Equations 230 (2006), 634–660. DOI: https://doi.org/10.1016/j.jde.2006.07.018

[32] A. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differential Equations 225 (2006), 528–548. DOI: https://doi.org/10.1016/j.jde.2005.12.001

[33] I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems and application to wave and plate boundary control problems, Appl. Math. Optim. 23 (1991), 109–154. DOI: https://doi.org/10.1007/BF01442394

[34] A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal. 21 (1990), no. 5, 1213–1224. DOI: https://doi.org/10.1137/0521066

[35] I. Munteanu, Boundary stabilization of the Navier–Stokes equation with fading memory, Int. J. Control 88 (2015), no. 3, 531–542. DOI: https://doi.org/10.1080/00207179.2014.964780

[36] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. 136 (2020), 1–21. DOI: https://doi.org/10.1016/j.matpur.2020.02.004

[37] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, vol. 198, Elsevier, Amsterdam, 1998.

[38] J. M. Rivera and L. H. Fatori, Smoothing effect and propagations of singularities for viscoelastic plates, J. Math. Anal. Appl. 206 (1997), 397–427. DOI: https://doi.org/10.1006/jmaa.1997.5223

[39] V. Shelukhin, A non-local in time model for radionuclides propagation in Stokes fluids, in: Dynamics of Fluids with Free Boundaries, vol. 107, Siberian Branch of the Russian Academy of Sciences, Institute of Hydrodynamics, pp. 180–193 (year not provided in source).

[40] X. Wang, Y. Chen, Y. Yang, J. Li, and R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal. 188 (2019), 475–499. DOI: https://doi.org/10.1016/j.na.2019.06.019

[41] F. B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29–40. DOI: https://doi.org/10.1007/BF02761845

Downloads

Published

2023 May 07

Issue

Section

Research Article

How to Cite

[1]
“Well-Posedness Results for a Class of Nonlinear Reaction-Diffusion Equations with Memory”, Electron. J. Appl. Math., vol. 1, no. 1, pp. 1–29, May 2023, doi: 10.61383/ejam.20231125.