Weak Solutions of Dirichlet Discrete Nonlinear Problems in a Two-Dimensional Hilbert Space

Authors

  • A.A.K. Dianda Université Thomas SANKARA, Centre Universitaire de Dori (CUD) 12 BP Ouagadougou 12, Burkina Faso Corresponding Author https://orcid.org/0009-0003-5894-8582
  • Yassia Ouedraogo Laboratoire de Mathématiques et d'Informatique (LAMI), UFR, Sciences Exactes et Appliquées, Université Joseph KI-ZERBO, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
  • Malick Zoungrana Université Thomas SANKARA,Institut Universitaire de Formation Initiale et Continue (UIFIC), 12 BP Ouagadougou 12, Burkina Faso

DOI:

https://doi.org/10.61383/ejam.202534100

Keywords:

Discrete boundary value problem; critical point; two-dimensional discrete Hilbert space; weak solution; variational approach.

Abstract

 In this paper we prove the existence of at least one weak solution of a
 discrete nonlinear Dirichlet boundary-value problem in a two-dimensional
 Hilbert space. The main existence results based on variational approach,
 specially minimization methods.

References

[1] R. P Agarwal. Di erence equations and inegalities: Theory, methods and a

pplications. 228 of Monographs and Texbooks in Pure and Applied Mathe

matics, Marcel Dekker, New York , NY , USA , 2nd edition:3544, 2000.

[2] R.P. Agarwal, K. Perera, and D. O'Regan. Multiple positive solutions of sin

gular and nonsingular discrete problems via variational methods. Nonlinear

Anal, 58:6973, 2004.

[3] G. Bonanno and P. Candito. Non-di erentiable functionals and applications

to elliptic problems with discontinuous nonlinearities. Journal of Di erential

Equations 244, pages 30313059, 2008.

[4] G. Bonanno and P. Candito. Nonlinear di erence equations investigated via

critical point methods. Nonlinear Analysis 70, pages 3180 3186, 2009.

[5] X. Cai and J. Yu. Existence theorems for second-order discrete boundary

value problems. J. Math. Anal. Appl, 320:649661., 2006.

[6] A. A. K. Dianda and S. Ouaro. Existence and multiplicity of solutions to

discrete inclusions with the p(k)-Laplacian problem of Kirchho type. Asia

Pac. J. Math, 7:6,119., 2020.

[7] S. Du and Z. Zhou. Multiple solutions for partial discrete Dirich

let problems involving the p-Laplacian. Mathematics, 2020, 8, 2030;

doi:10.3390/math8112030.

[8] M. Galewski and Sz. Glab. On the discrete boundary value problem for

anisotropic equation. J.Math.Anal.Appl, 386:956965, 2012.

[9] M. Galewski and R. wieteska. Existence and multiplicity of positive solutions

for discrete anisotropic equations. Institute of Mathematics, Technical Uni

versity of Lodz, Wolczanska 215, 90-924 Lodz, Poland, 38:297 310, 2014.

[10] I. Ibrango, B. Koné, A. Guiro, and S. Ouaro. Weak solutions for anisotropic

nonlinear discrete dirichlet boundary value problems in a two-dimensional

Hilbert space. Nonlinear Dynamics and Systems Theory 21(1), pages 9099,

2021.

[11] Mawhin J. Problèmes de Dirichlet variationnels non linéaires . Les Presses

de l'Université de Montréal, 1987.

[12] B. Koné, I. Nyanquini, and S. Ouaro. Weak solutions to discrete nonlinear

two-point boundary-value problems of Kirchho type. Electronic Journal of

Di erential Equations,, 2015(2015) , No. 105:110, 2015.

[13] B. Koné and S. Ouaro. Weak solutions for anisotropic discrete boundary

value problems. J. Di er. Equ. Appl. 16(2), pages 111, 2010.

[14] C.Y Lei, J.F Liao, and C.L Tang. Multiple positive solutions for Kirchho

type of problems withsingularity and critical exponents. Journal of Mathe

matical Analysis and Applications, (421):521538, 2015.

[15] M. Mihailescu, V. Radulescu, and S. Tersian . Eigenvalue problems for

anisotropic discrete boundary value problems. Journal of Di erential Equa

tions, 15:557567, 2009.

[16] A. Ourraoui and A. Ayoujil. On a class of non-local discrete boundary value

problem. Arab Journal of mathematical Sciences, 2020.

[17] R. Sanou, I. Ibrango, and B. Koné. Weak nontrivial solutions to discrete

nonlinear two-point boundary-value problems of Kirchho type. Journal of

Advances in Applied Mathematics, 6 , No.1 , January, 2021.

[18] Z. Yucedag. Existence of solutions for anisotropic discrete boundary value

problems of Kirchho type. International Journal of Di erential Equations

and Applications, 13(1):1 15, 2014.

[19] G. Zhang and S. Liu. On a class of semipositone discrete boundary value

problem. J. Math. Anal. Appl, 325:175182, 2007.

[20] V. Zhikov. Averaging of functionals in the calculus of variations and elasticity.

Mathematics of the USSR-Izvestiya, 29:3366, 1987

Downloads

Published

2025 Sep 15

Issue

Section

Research Article

How to Cite

[1]
“Weak Solutions of Dirichlet Discrete Nonlinear Problems in a Two-Dimensional Hilbert Space”, Electron. J. Appl. Math., vol. 3, no. 3, pp. 21–33, Sep. 2025, doi: 10.61383/ejam.202534100.

Most read articles by the same author(s)