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Abstract
In this article, we proposed a modified version of the Gordon-Schaefer model in which harvesting is
non-linear and the mortality rate of the fish stock is a function of temperature. We showed that every
solution of the system is globally bounded and that there is a single interior equilibrium point that is
locally, asymptotically, and globally stable under certain conditions. We then determined the optimal
levels of production and profit when the stock evolution is kept constant (MSY and MEY, respectively).
Furthermore, using Pontryagin’s maximum principle, we characterized the optimal harvesting policy
that maximizes net present value. Finally, we performed numerical simulations to validate our theoretical
results.

Keywords: equilibrium points, stability, profit, fishing effort, MSY, MEY, temperature
MSC (2020): 34B05, 34B08, 34D20, 34D23, 93D05, 49J15, 19K15
Article history: Received 10 Apr 2025; Accepted 15 Sep 2025; Online 25 Sep 2025

1 Introduction

The foundations of fisheries theory were developed by Gordon (1954) and Schaefer (1957).
Their model (the first in bioeconomics) links biological and economic factors inspired by the
Lotka-Volterra predator-prey model and is presented as follows: [2, 7]

dB(S)
dS

=a1B(S)(1 − B(S)
K0

)− qE(S)B(S),

dE(S)
dS

=α[wqE(S)B(S)− c0E(S)],
(1)

where the prey is the fish stock denoted by B and the predator is the fishing effort E, i.e., all the
material and human resources used to carry out fishing activities, time is denoted by S, and
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qE(S)B(S) is the harvest or production. As for the model parameters, we have a1 the natural
growth rate of stock B, K0 the carrying capacity of the aquatic environment, q the coefficient
of fishing intensity, w is the (constant) unit price at landing, c0 is the (constant) unit cost of
fishing effort, and α is the rigidity parameter measuring the reaction force of fishing effort to
the perceived rent [7]. This model can be used to calculate the maximum sustainable yield
(MSY) [5] and the maximum economic yield (MEY) [4] when stock remains constant. These
thresholds enable fisheries management policies to reconcile the conservation of fish stocks
with the economic profitability of the activity. Furthermore, it (the model) highlights that in
the absence of fishing effort regulation, the fishery will tend to expand until the marginal
profit is dissipated, which is the situation of open access (OA). Despite these important results,
aquatic resource management faces significant challenges, including global warming [9], [13]
and overexploitation [1]. In this article, we replace the capture qEB in the previous model

with a non-linear Holling 2 function,
m1B(S)E(S)

B(S) + K1
, to account for the saturation of the harvest

due to the complexity of the seafloor. Here, m1 is the maximum capture intensity coefficient,
and K1 is the maximum (optimal) capture value. The model also considers the impact of
climate change on the fishery stock. Thus, we assume that stock’s mortality can be natural

or temperature-related. This allows us to introduce the term −d0e
− A

b (
1
T −

1
Tre f

)
B(S) , where T is

the temperature of the aquatic environment, Tre f is the maximum reference temperature of the
exploited resource, d0 is the mortality rate of the species at temperature Tre f , A is the activation
energy, and b = 8.314 J.mol−1.K−1 is the Boltzmann constant [3]. We obtain an extension of the
Gordon-Schaefer model, which is defined as follows:

dB(S)
dS

= a1B(S)(1 − B(S)
K0

)− m1B(S)E(S)
B(S) + K1

− d0e
− A

b (
1
T −

1
Tre f

)
B(S)

dE(S)
dS

= α

[
w

m1B(S)
B(S) + K1

E(S)− c0E(S)
]

B(0) > 0, E(0) ≥ 0; B, E ∈ C1(]0,+∞[; R+).

(2)

To facilitate the qualitative study of the system (2), we make a change of variables that reduces
the number of parameters.
Let us set t = a1S, u(t) = B(S)

K0
, v(t) = E(S)

K0a1
, K = K1

K0
, d = d0

a1
, a = c0

a1
and p = w

c0
.

thus, we have 

du(t)
dt

= ((1 − u(t))− m1v(t)
u(t) + K

− de
− A

b (
1
T −

1
Tre f

)
)u(t)

dv(t)
dt

= αa(
pm1u(t)
u(t) + K

− 1)v(t)

u(0) > 0, v(0) ≥ 0.

(3)

2 Boundedness of solutions

In this section, we give the bounding conditions for the fish stock u and the fishing effort v in
order to define their limits. Consider the following notation:

• R2
+ =

{
(u, v) ∈ R2 : u ≥ 0, v ≥ 0

}
,

• int(R2
+) =

{
(u, v) ∈ R2 : u > 0, v > 0

}
,

Lemma 2.1. The interior int(R2
+) and the boundary ∂(R2

+) of the positive quadrant are invariant for
the system (3).

Proof. We want to show that if the initial state (u(0), v(0)) is in int(R2
+) or ∂R2

+, then the
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trajectories (u(t), v(t)) remain in these sets for all t > 0. Let us set
h1(t) = (1 − u(t))− m1v(t)

u(t) + K
− de

− A
b (

1
T −

1
Tre f

)
,

h2(t) = αa
[

pm1u(t)
u(t) + K

− 1
]

.

Let (u(0), v(0)) ∈ R2
+, τ > 0.

such as u and v are continuous on R+ and more particuliarly on the compact set [0; τ] ⊂ R+,
then h1 and h2 are also continuous on [0; τ], hence h1 and h2 are uniformly continuous on [0; τ]

and reach their bounds there. Therefore,
∫ τ

0
h1(t)dt and

∫ τ

0
h2(t)dt exist and are bounded.

Starting from the system (3), the possible solutions are expressed as follows:

u(0)exp(η1τ) ≤ u(τ) = u(0)exp(
∫ τ

0
h1(t)dt) and v(0)exp(ζ1τ) ≤ v(τ) = v(0)exp(

∫ τ

0
h2(t)dt)

where η1 = mint∈[0;τ](h1(t)) and ζ1 = mint∈[0;τ](h2(t)).

• If (u(0), v(0)) ∈ int(R2
+) u(0) > 0 and v(0) > 0, then exp(

∫ τ

0
h1(t)dt) and exp(

∫ τ

0
h2(t)dt)

remain well defined and the solutions u(τ) > 0 and v(τ) > 0 for all τ > 0. This guarantees
that (u(τ), v(τ)) ∈ int(R2

+).
• If (u(0), v(0)) ∈ ∂(R2

+), i.e., u(0) = 0 or v(0) = 0 then u(τ) = 0 and v(τ) = 0 for all τ > 0.
This guarantees that (u(τ), v(τ)) ∈ ∂(R2

+).

Theorem 2.2. consider the set Γ =
{
(u, v) ∈ R2

+ : 0 ⩽ u ⩽ 1; 0 ⩽ v ⩽ 1
}

. All solution of the system
(3) is globally bounded and remains in the domain Γ.

Proof. Let us determine the upper limits of u and v. According to the first equation of the
system (3), we have 

du(t)
dt

⩽ u(t)(1 − u(t)),

u(0) ≥ 0.

According to the arguments of comparisons [8], we have 0 ≤ u(t) ≤ (1 + ( 1
u(0) − 1)e−t)−1, so

we deduce that lim sup
t→+∞

u(t) ⩽ 1. Therefore, ∀t > 0, we have u(t) ≤ 1.

Starting from the second equation of the system (3), we have:
dv(t)

dt
= αa(

pm1u(t)
u(t) + K

− 1)v(t),

v(0) ≥ 0.

And for all t > 0, we have u(t) ≤ 1, consequently

dv(t)
dt

⩽ αa
[ pm1

K
− 1
]

v(t).

Thus, according to the principle of comparison, we have

v(t) ⩽
v(0)

v(0) + e−(
pm1

K −1)t
≤ 1, ∀t > 0.

https://ejamjournal.com/
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3 Points of equilibrium

In this section and for the rest of our work, we define

β(T) = 1 − de
− A

b

(
1
T −

1
Tre f

)
.

Consequently, β(T∗) = 0, with

T∗ =
A

A + b ln(d) Tre f
Tre f > 0 if d > e

− A
bTre f .

The study of the sign of β on (0,+∞) showed that β is decreasing and that

1 − de
− A

bTre f < β(T) < 1.

We have β(Tre f ) = 1 − d. Thus, Tre f < T∗ is equivalent to 0 < d < 1; in addition, Tre f > T∗ is
equivalent to d > 1. For all T ∈ (Tre f , T∗), we have

0 < β(T) < β(Tre f ) < 1.

The reference temperature Tre f corresponds to the temperature at which the fish population
develops normally. Thus, when discussing climate change, we consider that the temperature of
the aquatic environment T is within the interval (Tre f , T∗) where β(T) > 0. However, beyond
T∗, we have that β(T) < 0. In our work, the thermal zone defined by (Tre f , T∗) is equivalent to
the thermal tolerance zone, as defined by Souchon et al. [11].

Theorem 3.1. If

pm1 > 1 +
K

β(T)
, (4)

is verified, then

1) the system (3) has two trivial equilibrium points E1 = (0, 0) and E2 = (β(T), 0).

2) The interior equilibrium of the model (3) is of the form E3 = (u∗
e , v∗e ), where u∗

e =
K

pm1 − 1
and

v∗e = (β(T)− u∗
e )
(

u∗
e +K
m1

)
.

Proof. To determine the equilibrium points (ue, ve), we solve the following equations
du
dt

= 0

and
dv
dt

= 0. We proceed as follows:

1) By solving
du
dt

= 0 for v = 0, and
dv
dt

= 0 for u = 0, we obtain the following equilibrium

points E1 = (0, 0) and E2 = (β(T), 0).

2) ue ̸= 0 and ve ̸= 0.
By solving the following system of equations

due

dt
= (1 − ue)−

m1ve

ue + K
− de

− A
b

(
1
T −

1
Tre f

)
= 0,

dve

dt
= pm1

ue

ue + K
− 1 = 0,
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we obtain 
ve = (β(T)− ue)

(
ue + K

m1

)
,

ue =
K

pm1 − 1
.

such as pm1 > 1 +
K

β(T)
then u∗

e =
K

pm1 − 1
and v∗e = (β(T) − u∗

e )

(
u∗

e + K
m1

)
are positive.

Therefore, under the condition pm1 > 1 +
K

β(T)
, the interior equilibrium of model (3) is of the

form E3 = (u∗
e , v∗e ).

Remark 3.2. The bionomic equilibrium E3 refers to the state of equilibrium reached in a
free-access fishery (with no restrictions on fishing effort), where total profit is zero. At this
equilibrium, marginal profit (profit per unit of effort) and the growth rate of biomass are zero.
Furthermore, zero profit implies zero rate of change in fishing effort, which is proportional to
marginal profit.

4 Local stability of equilibrium points

In this section, we will define the conditions under which equilibrium points are stable or
unstable.

Theorem 4.1. If (4) and
β(T) > K, (5)

are verified, then

1) E1 = (0, 0) is unstable.
2) E2 = (β(T), 0) is unstable.

3) a) If p <
1

m1

(
1 +

2K
β(T)− K

)
then E3 is stable.

b) If p >
1

m1

(
1 +

2K
β(T)− K

)
then E3 is unstable.

Proof. Let us determine the Jacobian matrix of the system (3) associated with each equilibrium
point Ei, i = 0, 1, 2.

Consider the functional F defined by

F : R2 −→ R2, (u(t), v(t)) 7−→
(

f1(u(t), v(t))
f2(u(t), v(t))

)
,

where

f1(u(t), v(t)) =
[

β(T)− u(t))− m1v(t)
u(t) + K

]
u(t), f2(u(t), v(t)) = αa

[
pm1u(t)
u(t) + K

− 1
]

v(t).

The Jacobian matrix of F is

JF(u(t), v(t)) =
(

J11 J12
J21 J22

)
,

where

J11 =
∂ f1(u(t), v(t))

∂u(t)
= β(T)− 2u(t)− m1Kv(t)

(u(t) + K)2 ,

https://ejamjournal.com/
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J12 =
∂ f1(u(t), v(t))

∂v(t)
= − m1u(t)

u(t) + K
,

J21 =
∂ f2(u(t), v(t))

∂u(t)
= αa

pm1Kv(t)
(u(t) + K)2 ,

J22 =
∂ f2(u(t), v(t))

∂v(t)
= αa

[
pm1u(t)
u(t) + K

− 1
]

.

1) For E1 = (0, 0), the associated Jacobian matrix is

JF(E1) =

(
β(T) 0

0 −αa

)
.

So the eigenvalues of JF(E1) are λ1 = β(T) and λ2 = −αa, whose respective associated
eigenspaces are Eλ1 =< (1 0)t > and Eλ2 =< (0 1)t >. Such as T ∈]Tre f ; T∗[ then β(T) > 0,
so λ1 > 0 and λ2 < 0. Hence, E1 is a saddle point, therefore unstable with an unstable
variety Eλ1 and a stable variety Eλ2 .

2) For E2 = (β(T), 0), the associated Jacobian matrix is

JF(E2) =

−β(T) − m1β(T)
β(T) + K

0 αa
(

pm1β(T)
β(T) + K

− 1
)
 .

Then its eigenvalues are λ′
1 = −β(T) and λ′

2 = αa
(

pm1β

β(T) + K
− 1
)

, and its respective

eigenspaces are Eλ′
1
=< (1 0)t > and Eλ′

2
=< (θ1 θ2)t >, where

θ1 =
m1β(T)

β(T) + K
, θ2 = −β(T)− λ′

2.

Such as β(T) > K and pm1 > 1 +
K

β(T)
then λ′

2 > 0 and λ′
1 < 0. Hence, E2 is a saddle

point therefore unstable, with Eλ′
1

a stable variety and Eλ′
2

an unstable variety.
3) For

E3 =

(
u∗

e , (β(T)− u∗
e )

(
u∗

e + K
m1

))
where u∗

e =
K

pm1 − 1
,

the associated Jacobian matrix is

JF(E3) =

(
J11 J12
J21 J22

)
,

with

J11 = β(T)− 2u∗
e −

m1Kv∗e
(u∗

e + K)2 ,

J12 = − m1u∗
e

u∗
e + K

,

J21 = αa
pm1Kv∗e
(u∗

e + K)2 ,

J22 = 0.
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The characteristic polynomial of JF(E3) is

P(X) = X2 − tr(JF(E3))X + det(JF(E3)),

with tr(JF(E3)) = J11 and det(JF(E3)) = −J21 J12. Let λ∗
1 and λ∗

2 be solutions of

P(X) = X2 − tr(JF(E3))X + det(JF(E3)) = 0,

such as the eigenspace associated with λ∗
1 is Eλ∗

1
=< (J12 (λ

∗
1 − J11))

t > and the eigenspace
associated with λ∗

2 is
Eλ∗

2
=< (J21 (λ∗

2 − J22))
t > .

As det(JF(E3)) = −J21 J12 > 0 then λ∗
1 and λ∗

2 have the same signs. Furthermore, the sign
of tr(JF(E3)) depends on that of J11. Such as

J11 =
u∗

e
(u∗

e + K)
[
−2u∗

e + (β(T)− K)
]

and
u∗

e
(u∗

e + K)
> 0,

then the sign of J11 depends on

C1(u∗
e ) = −2u∗

e + (β(T)− K).

Furthermore, since u∗
e =

K
pm1 − 1

and that β(T) > K, then we can deduce that for

a) p <
1

m1

(
1 +

2K
β(T)− K

)
, we have C1(u∗

e ) < 0 therefore tr(JF(E3)) < 0, i.e., λ∗
1 and

λ∗
2 are negative. Therefore E3 is stable.

b) p >
1

m1

(
1 +

2K
β(T)− K

)
, we have C1(u∗

e ) > 0 therefore tr(JF(E3)) > 0, i.e., λ∗
1 and

λ∗
2 are positive. Therefore E3 is unstable.

Remark 4.2. Under the conditions of the previous theorem, there is a Hopf bifurcation that
occurs at the value p = pc, where

pc =
1

m1
(1 +

2K
β(T)− K

).

5 Global stability

In this section, we determine the conditions ensuring the global stability of the interior equilib-
rium by using a carefully chosen Lyapunov functional.

Theorem 5.1. If
m1v∗e

(u + K)(u∗
e + K)

< 1, (6)

the E3 is globally asymptotically stable.

Proof. The proof of the theorem is based on the Lyapunov function. Let V1 : R2 → R and
V2 : R2 → R such as:

V1(u, v) = [u − u∗
e − u∗

e ln
(

u
u∗

e

)
] =

∫ u

u∗
e

(
1 − u∗

e
η

)
dη,

https://ejamjournal.com/
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and

V2(u, v) = [v − v∗e − v∗e ln
(

v
v∗e

)
] =

∫ v

v∗e

(
1 − v∗e

η

)
dη,

with u and v depending on t.

Let V(u, v) = V1(u, v) + V2(u, v) and proceed to calculate
dV(u, v)

dt
. We have

dV
dt

=
dV1

dt
+

dV2

dt
=

dV1

du
du
dt

+
dV2

dv
dv
dt

.

According to the system (3), we arrive at
u̇
u
=

(
β(T)− u − m1v

u + K

)
,

v̇
v
= αa

(
pm1u
u + K

− 1
)

.

Furthermore, taking into account the interior equilibrium point E3 = (u∗
e , v∗e ), we obtain:

β(T) = u∗
e +

m1v∗e
u∗

e + K
and 1 =

pm1u∗
e

u∗
e + K

.

Thus, we have 
u̇
u
=

(
u∗

e +
m1v∗e

u∗
e + K

− u − m1v
u + K

)
,

v̇
v
= αa

(
pm1u
u + K

− pm1u∗
e

u∗
e + K

)
.

Then we have

dV
dt

= (u − u∗
e )

[
−(u − u∗

e ) + m1
v∗e (u − u∗

e )− u∗
e (v − v∗e )

(u + K)(u∗
e + K)

]
+ (v − v∗e )

[
pm1K(u − u∗

e )

(u + K)(u∗
e + K)

]
,

implies that

dV
dt

=

[
−1 +

m1v∗e
(u + K)(u∗

e + K)

]
(u − u∗

e )
2 +

[
pm1K − m1u∗

e
(u + K)(u∗

e + K)

]
(v − v∗e )(u − u∗

e ).

Therefore, we have

dV
dt

= (u − u∗
e v − v∗e )

(
A11

A21
2

A21
2 A22

)(
u − u∗

e
v − v∗e

)
,

with

A11 = −1 +
m1v∗e

(u + K)(u∗
e + K)

, A22 = 0, A12 = A21 =
pm1K − m1u∗

e
(u + K)(u∗

e + K)
.

According to condition (6), we have A11 < 0, and such as A22 = 0, then det(S) =

−(
A21

2
)2 ≤ 0. Therefore, we can deduce that the following matrix(

A11
A21
2

A21
2 A22

)

is a negative definite symmetric matrix. Hence E3 is globally asymptotically stable.
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5.1 Simulations

Table 1: Data

d b K T A a α Tre f m1
0.3 8.314 0.3 301.9250 90 2.5 0.35 298.25 3.7625

In this subsection, we numerically analyze the impact of the unit price/unit cost ratio of fishing
effort (p = w/c0) on model stability by analyzing the Hopf bifurcation. Thus, we construct
the trajectories of stock u and fishing effort v on the one hand, and on the other hand, a phase
portrait defining the curve of fishing effort evolution relative to stock before and after a critical
threshold of the bifurcation parameter. All these curves are constructed by simulating using the
data in Table 1. and Scilab codes for the fourth-order Runge-Kutta method (RK4) for a period
t f = 500 and a discretization step h = 1/2L, where L = 11.8418 is an estimate of the Lipschitz
constant of the model under study. Table 1 describes a situation where the temperature of the
marine environment is 301.9250 K (or 28.7750◦C), and the maximum reference temperature
favorable to the development of fishery resources is 298.25 K (or 25.10◦C), an activation energy A
equal to 90 kJ/mol, the maximum catch value is 30% of the carrying capacity of the environment
(K = 0.3, or K1 = 0.3 ∗ K0). Furthermore, at 25.10◦C, the mortality rate of the resource is 30% of
its growth rate (d = 0.3, or d0 = 0.3 ∗ a1), the maximum value of the catch intensity is equal to
3.7625 tons/effort/year, and the unit cost per effort is 2.5 times the natural growth of the stock
(a = 2.5 or c0 = 2.51 ∗ a1). This gives us the figures below: (See Figure 1 and Figure 2.)
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stock (u)
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(a) Trajectories
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E
ffo

rt
 (
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0.05

0.1

0.15
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initial conditions
Traj. IC(0.7, 0.04)
initial conditions
Traj. IC(0.2, 0.1)
initial conditions
E1
E2
E3

(b) Phase portrait

Figure 1: Trajectories and phase portrait of the predator-prey system for p < pc = 0.6646, illustrating the
stability of the interior equilibrium E3 = (0.281, 0.065)
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Figure 2: Trajectories and phase portrait of the predator-prey system for p > pc = 0.6646, illustrating the
unstability of the interior equilibrium E3 = (0.157, 0.066)

5.1.1 Interpretation
According to Figures (1) and (2), we observe that for p < 0.6646, in other words, the unit price at
landing is less than the product of 0.6646 and the unit cost of fishing effort (w < 0.6646 ∗ c0), then
the fish stock and fishing effort converge towards their steady states, i.e., E3 = (0.281, 0.065)
where stock B is 28.1% of the carrying capacity of the environment (B = 0.281 ∗ K0) and fishing
effort E is 6.5% of a1 ∗ K0. Now, if we keep the other parameters fixed and gradually increase
the value of p, we obtain a critical value of p (w/c0) equal to 0.6646, where a Hopf bifurcation
occurs. Furthermore, for a unit landing price greater than 66.46% of the unit cost of effort
(p > 0.6646), the positive equilibrium (0.157 ∗ K0, 0.066 ∗ a1 ∗ K0) or E3 = (0.157, 0.066) is
unstable and we have a limit cycle.

6 Static Optimization

In this subsection, we will determine the maximum sustainable yield (MSY) and maximum

economic yield (MEY) when
du
dt

= 0. In MSY and MEY, we will determine the level of stock
and fishing effort in order to deduce the optimal yield and optimal profit. These MSY and MEY
thresholds allow fisheries management policies to set the total allowable catch (TAC) [12] over
a given period, in order to avoid overexploitation of the specie and ensure the sustainability of
fishing activity.

Theorem 6.1. If condition (4) is satisfied, then

1) the maximum sustainable stock production u is

HMSY =
β2(T)

4
,

where stock uMSY =
β(T)

2
and fishing effort vMSY = (β(T)− uMSY)(

uMSY + K
m1

).

2) The maximum economic profit at stock equilibrium u is

πMEY = a[
pm1uMEY

uMEY + K
− 1]vMEY,

where the value of stock is uMEY =
β(T)(pm1 − 1) + K

2(pm1 − 1)
, and the fishing effort is

vMEY = (β(T)− uMEY)(
uMEY + K

m1
).
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Proof.

1) To calculate the maximum sustainable yield (MSY) of stock u, we need to figure out the max

harvest possible while keeping the stock balanced, meaning
du
dt

= 0.

Given that
du
dt

= 0 implies that [
β(T)− u − m1v

u + K

]
u = 0,

implies that
m1vu
u + K

= [β(T)− u] u.

Let
H(u) =

m1vu
u + K

= [β(T)− u] u

be the production. Then the problem is as follows

Find uMSY ∈ [0, 1] as is :


Max{0≤u≤1}H(u),

s.c
du
dt

= 0.

The derivative of H is
dH(u)

du
= β(T) − 2u(t) and it is zero for u =

β(T)
2

. Furthermore,

d2H(u)
du2 = −2 < 0, so we can deduce that for uMSY =

β(T)
2

and

vMSY = (β(T)− uMSY)

(
uMSY + K

m1

)
,

the maximum production is HMSY =
β2(T)

4
.

2) Determine the maximum economic yield at stock equilibrium u (MEY), i.e., maximize net
profit while maintaining stock at equilibrium.

Since
du
dt

= 0 implies that [
β(T)− u − m1v

u + K

]
u = 0,

implies that
m1vu
u + K

= [β(T)− u] u,

implies that

v = (β(T)− u)
(

u + K
m1

)
.

Let us set the net profit

Π(u, v) = a
[

pm1u
u + K

− 1
]

v.

And by replacing v with its expression in Π, we obtain

π(u) = apu(β(T)− u)− a(β(T)− u)
(

u + K
m1

)
.
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Then the problem is as follows:

Find uMEY ∈ [0, 1] as is :


Max{0≤u≤1}π(u),

s.c
du
dt

= 0.

The derivative of π is

dπ(u)
du

=
a

m1

[
2(1 − pm1)u +

(
β(T)(pm1 − 1) + K

)]
and it is zero for

u =
β(T)(pm1 − 1) + K

2(pm1 − 1)
.

Furthermore,
d2π(u)

du2 = 2a(1 − pm1) < 0 because pm1 > 1, so we can deduce that for

uMEY =
β(T)(pm1 − 1) + K

2(pm1 − 1)
and vMEY = (β(T)− uMEY)

(
uMEY + K

m1

)
,

the maximum profit is

πMEY = a
[

pm1uMEY

uMEY + K
− 1
]

vMEY.

6.1 Numerical result

Table 2: Data.

d b K T A a α p Tre f m1
0.3 8.314 0.3 301.9250 90 2.5 0.35 0.550 298.25 3.7625

The table 2 verifies the stability of the interior equilibrium and the instability of trivial equi-
librium points. But here, it is used because it verifies condition (4) of theorem 6.1, and allows
us to numerically calculate profit, production, fish stock, and fishing effort in MSY, MEY, and
open access (OA). Indeed, in MSY we have production HMSY equal to 0.1225, for a fish stock
level uMSY equal to 0.3499, i.e., BMSY = 0.3499 ∗ K0 and a fishing effort vMSY equal to 0.0604,
i.e., EMSY = 0.0604 ∗ a1 ∗ K0. Then, in MEY we have the profit πMEY equal to 0.0312, for a fish
stock level uMEY equal to 0.4902, i.e. BMEY = 0.0312 ∗ K0 and a fishing effort vMEY equal to
0.0440, i.e. EMEY = 0.0440 ∗ a1 ∗ K0. Finally, in a situation known as open access (OA), which
results in the interior equilibrium (0.2805 ∗ K0, 0.0647 ∗ a1 ∗ K0), the fisherman’s profit is zero,
i.e. πOA= 0, for a stock level uOA is 0.2805, i.e. BOA = 0.2805 ∗ K0, and a fishing effort vOA equal
to 0.0647, i.e. EOA = 0.0647 ∗ a1 ∗ K0. Based on the data in Table 2, we can also deduce that
BOA < BMSY < BMEY and EOA > EMSY > EMEY.

7 Optimal harvesting policy

The primary challenge in fisheries management is to find a balance between the quantity of
fish caught, revenue, and costs associated with the activity so that the fishery is profitable but
sustainable. To do this, we consider t f to be the period over which the activity is carried out
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and U to be the set of admissible harvesting strategies defined by
{m1 : [0; t f ] → [m1min; m1max], Lesbegue mesurable}. And our control problem is given by:

max
m1∈U

J(m1) = max
m1∈U

t f∫
0

g(t, u, v, m1) dt

(s.c)



du(t)
dt

=

[
1 − u(t)− m1(t)v(t)

u(t) + K
− de

− A
b

(
1
T −

1
Tre f

)]
u(t),

dv(t)
dt

= αa
[

pm1(t)u(t)
u(t) + K

− 1
]

v(t),

u(0) > 0, v(0) ⩾ 0, u(t f ) > uMSY, v(t f ) < 1,

(7)

where

• g(t, u, v, m1) = a
[

pm1(t)u(t)
u(t) + K

− 1
]

v(t)e−δt,

• δ > 0: constant representing the discount rate [10],
• J: the present value (in continuous time) of total net revenue.

Let us assume

F(t, u, v, m1) =

(
f1(t, u, v, m1)
f2(t, u, v, m1)

)
=


(

1 − u(t)− m1(t)v(t)
u(t) + K

− de
− A

b

(
1
T −

1
Tre f

))
u(t)

αa
(

pm1(t)u(t)
u(t) + K

− 1
)

v(t)

 .

As for the existence of optimal control, we rely on the following proposition, which is an
example of a result extracted from [6].

7.1 Existence of optimal control

Proposition 7.1. Suppose 
min
u∈U

J(u) =

t f∫
t0

f (t, x, u) dt

(s.c)


dx(t)

dt
= g(t, x, u),

x(t0) = x0, x(t f ) f ree.

where U is the set of controls for the above problem consisting of Lebesgue integrable functions on [t0, t f ]
with values in R. We assume that f (t, x, u) is convex in u and that there exist constants C1, C2, C3 > 0,
C4 and µ > 1 such that for all t ∈ [t0, t f ] and all x, x1, u ∈ R, we have:

1) g(t, x, u) = α(t, x) + β(t, x)u,
2) |g(t, x, u)| ≤ C1(1 + |x|+ |u|),
3) |g(t, x1, u)− g(t, x, u)| ≤ C2 |x1 − x|(1 + |u|),
4) f (t, x, u) ≥ C3|u|µ − C4.

Then there exists an optimal control u∗ that minimizes J(u).

Remark 7.2. For a maximization case, we must show that f (t, x, u) is concave, and we retain 1),
2), 3) and replace 4) with f (t, x, u) ≤ A1 − A2|u|µ, with A1 ∈ R and A2 ∈ R.

For proposition 7.3 and its proof, we use proposition 7.1 and the remark 7.2.
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Proposition 7.3. Problem (7) admits an optimal control m1δ that maximizes the objective function J.

Proof. 1) Let us show that g is concave with respect to m1.

g(t, u, v, m1) = π(t, u, v, m1)e−δt = a
[

pm1(t)u(t)
u(t) + K

− 1
]

v(t)e−δt, implies that g is affine with

respect to m1, so g is concave.

2) Let’s show that F(t, u, v, m1) = R(t, u, v) + Y(t, u, v)m1,
where

R(t, u, v) =
(
(β(T)− u(t))u(t)

−αav(t)

)
and Y(t, u, v) =

 − v(t)u(t)
u(t) + K

αapu(t)v(t)
u(t) + K

 .

We have

F(t, u, v, m1) =

(β(T)− u(t)− m1(t)v(t)
u(t) + K

)u(t)

αa(
pm1(t)u(t)
u(t) + K

− 1)v(t)


implies that

F(t, u, v, m1) =

(
(β(T)− u(t))u(t)

−αav(t)

)
+ m1(t)

 − v(t)u(t)
u(t) + K

αapu(t)v(t)
u(t) + K

 .

3) Let us show that

| f1(t, u, v, m1)| ≤ C1(1 + |u(t)|+ |v(t)|+ |m1(t)|)

and
| f2(t, u, v, m1)| ≤ C2(1 + |u(t)|+ |v(t)|+ |m1(t)|)

where C1 = max{1,
1
K
} and C2 = αmax{ ap

K
; a}. Firstly, we have

| f1(t, u, v, m1)| = |(β(T)− u(t)− m1(t)v(t)
u(t) + K

)u(t)|,

and as u(t) ≤ 1, then

| f1(t, u, v, m1)| ≤ |1 + u(t) +
m1(t)v(t)
u(t) + K

|.

Furthermore, v(t) ≤ 1, and we have

| f1(t, u, v, m1)| ≤ 1 + |u(t)|+ 1
K
(|v(t)|+ |m1(t)|) ≤ C1(1 + |u(t)|+ |v(t)|+ |m1(t)|).

Secondly, we have

| f2(t, u, v, m1)| ≤ |αa(
pm1(t)u(t)
u(t) + K

+ 1)|,

and as v(t) ≤ 1 then

| f2(t, u, v, m1)| ≤ C2(1 + |m1(t)|+ |v(t)|+ |u(t)|).
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4) Let us show that f1 and f2 are Lipschitz with relation to u and v. Suppose (u, v, u1, v1) ∈ Γ4.
Firstly, we have

| f1(t, u, v, m1)− f1(t, u1, v1, m1)| =
∣∣∣∣−u(t)− m1(t)v(t)

u(t) + K
−
(
−u1(t)−

m1(t)v1(t)
u1(t) + K

)∣∣∣∣ ,

which implies that

| f1(t, u, v, m1)− f1(t, u1, v1, m1)| ≤ |u1(t)− u(t)|+ m1(t)
K

|v1(t)− v(t)|.

Consequently,

| f1(t, u, v, m1)− f1(t, u1, v1, m1)| ≤ C3
(
|u1(t)− u(t)|+ |v1(t)− v(t)|

)
(1 + m1(t)),

with C3 = max
{

1;
1
K

}
.

Secondly,

| f2(t, u, v, m1)− f2(t, u1, v1, m1)| = αa
∣∣∣∣ pm1(t)u(t)v(t)

K + u(t)
− pm1(t)u1(t)v1(t)

K + u1(t)

∣∣∣∣ ,

which implies that

| f2(t, u, v, m1)− f2(t, u1, v1, m1)| ≤
αpam1(t)

K
|u(t)v(t)− u1(t)v1(t)|,

and consequently,

| f2(t, u, v, m1)− f2(t, u1, v1, m1)| ≤ C4
(
|u(t)− u1(t)|+ |v(t)− v1(t)|

)
(1 + m1(t)),

with C4 = max
{

1;
αap
K

}
.

5) g(t, u, v, m1) = a((
pm1(t)u(t)
u(t) + K

− 1)e−δt)v(t) and ∀(t, u, v, m1), g(t, u, v, m1) ≤ C5 − C6|m1(t)|2,

with C5 = pam2
1max, C6 =

ap
1 + K

and µ = 2. So there exists an optimal control m1δ that maxi-

mizes the objective function J.

7.2 Characterization of optimal control

After proving the existence of optimal control for the controlled system (3), we proceed to its
characterization. To do so, we use Pontryagin’s maximum principle to define the necessary
conditions for optimality.

Proposition 7.4. Let m1δ be an optimal control associated with an optimal state Eopt = (uopt, vopt).
Then there exist two adjoint functions γ1 and γ2 defined from [t0, t f ] to R such that:

1) a)

dγ1

dt
= −

[
ae−δt

( pm1Kvopt

(uopt + K)2

)
+ γ1

(
1 − 2uopt −

m1Kvopt

(uopt + K)2 − de
− A

b

(
1
T −

1
Tre f

))
+ γ2

αapm1Kvopt

(uopt + K)2

]
, γ1(t f ) = 0.
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b)

dγ2

dt
= −

[
ae−δt

( pm1uopt

uopt + K
− 1
)
−γ1

m1uopt

uopt + K
+γ2aα

( pm1uopt

uopt + K
− 1
)]

, γ2(t f ) = 0.

2) According to Pontryagin’s maximum principle, the characterization of optimal control is
m1max, i f ϕ(t) > 0,
m1min ≤ m1δ ≤ m1max, i f ϕ(t) = 0,
m1min, i f ϕ(t) < 0,

where ϕ is the commutative function defined by

ϕ(t) = ape−δt − γ1(t) + αapγ2(t).

Proof. Let (u, v) ∈ Γ, m1 ∈ U and (γ1, γ2) be the adjoint variables where γi(t f ) = 0, ∀i ∈ {0; 1}.
The Hamiltonian associated with problem (7) is defined by:

H = g(t, u, v, m1)+γ1

[
(1−u(t)− m1(t)v(t)

u(t) + K
− de

− A
b

(
1
T −

1
Tre f

)
]u(t)+γ2αa

[ pm1(t)u(t)
u(t) + K

− 1
]
v(t).

First, we have

γ̇1 =
dγ1

dt
= −∂H

∂u
|Eopt

implies that

γ̇1 = −
[

ae−δt
( pm1Kvopt

(uopt + K)2

)
+ γ1

(
1 − 2uopt −

m1Kvopt

(uopt + K)2 − de
− A

b

(
1
T −

1
Tre f

))
+ γ2

αapm1Kvopt

(uopt + K)2

]
, γ1(t f ) = 0. (8)

Next, we have
dγ2

dt
= −∂H

∂v
|Eopt

implies

dγ2

dt
= −

[
ae−δt

( pm1uopt

uopt + K
− 1
)
− γ1

m1uopt

uopt + K
+ γ2aα

( pm1uopt

uopt + K
− 1
)]

, γ2(t f ) = 0.

Finally, the optimality condition is

∂H
∂m1

= (ape−δt − γ1 + γ2αap)
uv

u + K
.

In Eopt, we have
∂H
∂m1

|Eopt = 0, and we obtain the switching function ϕ defined by

ϕ(t) = ape−δt − γ1(t) + αapγ2(t).
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7.3 Simulations

Table 3: Data

d b K T Tr p A δ a α m1
0.30 8.314 0.30 301.9250 298.25 0.7750 90 0.05 2.5 0.35 3.7625

In order to numerically justify the existence of an optimal control linked to the variation in
maximum catch intensity m1 ∈ [1; 5], maximizing the total profit from fishing activity, we
consider the data in the table 3 ensure the existence of a single unstable interior equilibrium E3.
To estimate the objective function J, we use the rectangle method, and the optimal control will be
sought using the forward-backward sweep method with a relaxation µ = 0.5 and a convergence
tolerance (threshold) of 10−10. To construct the controlled and uncontrolled trajectories of stock
and fishing effort, we use the RK4 method with time t = 150 and number of steps N = 1000,
u0 = 0.63 and v0 = 0.11. We obtain the following curves:

• The blue curve shows the evolution of fish stock u over time t.
• The red curve shows the evolution of fishing effort v over time t.
• The green curve shows the evolution of control m1 over time t.
• The black curve shows the evolution of criterion J over the number of iterations.
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Figure 3: The evolution of u, v, m1 and J
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7.4 Interpretation

For a maximum catch intensity m1 = 3.7625, we have the interior equilibrium E3 with a
fishing effort of v = 0.0647, i.e., E = 0.0647 ∗ a1 ∗ K0 and the fish stock level is u = 0.2805, or
B = 0.2805 ∗ K0, where the marginal profit from fishing is zero. After checking, we obtain the
optimal value for maximum catch intensity given by m1δ = 2.3539. For this control m1δ, we
obtain a level of effort of 0.0947, or Eopt = 0.0947 ∗ a1 ∗ K0, and a fish stock level of 0.3640, or
Bopt = 0.3640 ∗ K0. In addition, the fisherman’s total discounted profit is 0.10623 over a horizon
of 150.

8 Conclusion

In this article, we proposed a modified Gordon-Schaefer model considering the following
aspects: (i) the mortality of fish stock is a function of temperature, (ii) production is non-
linear. And to emphasize global warming, we focused on a thermal tolerance zone where the
temperature varies between 25.10°C and 36°C (298.25 K to 309.15 K). We were able to show that
the system is uniformly bounded, i.e., that the behavior of the species is biologically acceptable.
Next, we discussed the existence and stability of equilibrium points. It was shown that if p is
less than 0.6646, i.e., if the unit price at landing is less than the product of 0.6646 and the unit
cost of fishing effort, then all equilibrium points will converge to (0.2805 ∗ K0, 0.0647 ∗ a1 ∗ K0).
However, if the unit price at landing is greater than the product of 0.6646 and the unit cost
of fishing effort, then a limited cycle occurs around (0.2805 ∗ K0, 0.0647 ∗ a1 ∗ K0). Finally, we
studied static and dynamic optimization. At first, in terms of static optimization, we determined
the maximum production at equilibrium and the maximum profit at equilibrium and deduced
that the biomass level in OA is lower than that in MSY and MEY, and that the effort level in
OA is higher than that in MSY and MEY. Secondly, we focused on dynamic optimization and
demonstrated the existence of optimal control. Then, using Pontryagin’s maximum principle,
we found the value of optimal control that maximizes our criterion J analytically, which we
were able to obtain numerically when the interior equilibrium E3 is unstable.
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