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Abstract

The article addresses the inverse problem of identifying an unknown source term in a fractional elliptic
equation defined in a bounded domain. The approach to solving the problem under consideration, the
Landweber fractional method is used. This method involves constructing a regularization algorithm. A
posteriori and a priori lapses estimates areobtain obtained, and final data with random data is regard.
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1 Introduction

Fractional models are a key area in mathematical analysis that focus on the study and application
of integrals and derivatives of arbitrary orders. Due to their wide-ranging applications across
multiple scientific and engineering fields, they have become an area of significant interest for
researchers [2, 3,4, 5, 6,7, 8,9, 10]. This paper examines the problem of identifying a source
function in a fractional elliptic partial differential equation, expressed as:

DID)O(z) — Ab(z) =G, z>0, 1)

where 0 < v < 1, and D represents the fractional Liouville-Caputo derivative of order v, as
defined in [11]:

D)O(z,x) = 1"(11—7) /Oz(z —5) 70s(s,x)ds, 0<y <1 ()
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Our objective is to determine the unknown function f from interior data, given by:
6(L)=feH, 0<L<oo. 3)

where:

e A:D(A) € H — H is a positive self-adjoint operator with a compact resolvent.
e 7 represents a separable Hilbert space with an inner product (.,.) and norm ||.||.

Consider the set (A, en), where A,,n > 1 is an increasing unbounded sequence, and enn > 1
are the eigenvalues and eigenfunctions of A, forming an orthonormal basis in H. Atz = L,
additional data p is observed, which may include measurement inaccuracies. Inverse problems
often suffer from ill-posedness, making it essential to compensate for errors and establish
reliable error estimates. Various studies have tackled ill-posed fractional inverse problems using
different techniques. In [17, 18], the quasi-boundary value method was employed to derive
a regularized solution, while [19] adopted the quasireversibility method. Other approaches
[15, 16] utilized alternative regularization methods to mitigate instability in inverse problems.
The Fourier truncation method was introduced in [20], whereas [21] proposed a non-stationary
iterative Landweber regularization approach, incorporating a finite-dimensional approximation
to reconstruct a stable source term. Meanwhile, [12] explored an inverse problem involving
the elliptic fractional operator (D] DY — A) over an infinite domain and suggested a modified
Kozlov-Maz'ya iteration method with preconditioning techniques to recover missing data under
a complementary condition. This paper aims to address the inverse problem of recovering
the source function in the fractional elliptic diffusion equation over a general domain using
the fractional Landweber method. Initially, this method was introduced to solve the Cauchy
problem for the Helmholtz equation. Later, Li and Xiong recommended [14] for an inverse
heat conduction problem. Unlike conventional cases where the a-priori bound of the exact
solution is known, our problem does not allow for straightforward estimation. Thus, instead of
using a-priori parameter selection rules, we derive convergence rates using both a-priori and
a-posteriori parameter selection approaches. Our goal is to recover the source function G(x)
from indirect observable data 6(L) = f at the final state z = L. The observed data f(x), which
may contain measurement errors, satisfy:

1fs = fll5, < 0. (4)

Unless explicitly stated, | - |3; denotes the L? norm, and 6 > 0 represents the noise level. The
structure of the paper is as follows. Section 2 introduces key mathematical tools relevant to
the problem. Section 3 establishes the mild solution. Section 4 discusses the ill-posed nature of
problem (1) and presents convergence approximations using the fractional Landweber method
in Section 5, incorporating both a-priori and a-posteriori parameter selection strategies. The
final section examines the convergence rate when the function p involves random data.

2 Preliminary

The classical Mittag-Leffler function is defined by

) N
E,1(z) = — _ B8>0,zeC. (5)
11(2) HZ:OI“(l—i—n'y) &
Theorem 2.1. For every v € (0,1), we have

1 1
— < E 1 (—x) < ,x > 0. 6
1+T(1—9)x — 7a(=%) < 1+T(1+y) x r= ©)
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From (6), we deduce that

1
11T - )VaLr =

Evn(— VELY) < !

- 1+F(1+7)*1¢§L7'L>0' @

3 The mild solution

For 0 < ¢ < 1, let us consider the following well-posed system equations

DIDIO(z) — AB(z) =G, z€ (0,00),
{ 6(0) = 0. ®)

Theorem 3.1. Let G € H, then the problem (1) admits a unique generalized solution given by
0(z) = — (I — Ey1(—2"VA))AIG = —K,1(2)G

_ i (1 — Ew,l (é’_ \/aﬁ) <g,€k>€k. )
k=1 k
Let z = L in (9), we obtain
O(L) = — (I —E,1(— L"VA))AT'G = —K,1(L)G = . (10)

K,1(L) is a self-adjoint compact linear operator and sup, - ||Ky1(2)|| < &7 1 For f € H, the space
H' is defined by

MW = {f M ||Af|ly < oo}. (11)

The operator equation (10) admits a unique solution if and only if ¢ € H1.

4 Ill-posedness of the inverse problem

To determine the unknown function G, we just need to solve The operator equation (10), then
we have the following

= —Ck
g = , , 12
;(:211—(157,1(—L7\/§))<f ek>ek (12)
From (12) that the term 1-E,, (Ci ) is the instability cause, and we get
7= G < Ep(=LVE) < Ca(a), (13)
which implies that
1
1-Co(y) <1-Epa( = L") <1-G) 7z (14)
and so
Gk Gk Gk
< , 15
Ck_l—&(v)ék 1=Epi(=L7VE) — 1-C(7) =
and therefore
& < Ok < G — o0ask — oo, (16)
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Theorem 4.1. [11] Let the following condition holds

1615 = Zc [(Gree)|" < %5 >0, (17)
then
1G]|,2 < CosE T | FIITE, where Cyps = (1— Ca(7)) ™. (18)

5 The Fractional Landweber method

In this paragraph, a fractional Landweber regularization method has proposed to solve the
ill-posed problem (1). Moreover, we provide convergence estimate under the a-priori regu-
larization parameter choice rule. For noisy data and exact data, the solutions of fractional
Landweber regularization method are given. To solve the unposed ill-posed backward problem
(1)-(3), we propose a fractional Landweber regularization method. Next, according to the a-
priori regularization parameter selection rule, we derive the convergence estimate. A repetitive
execution of the fractional Landweber method can be found in [1]. For noisy data, Denote the
fractional Landweber regularization solution by

i mqa fé, €k> 1
= 1—(1-g|DY (L) 2 <7ek(-), s <a<l, (19)
and the fractional Landweber regularization solution with the exact data by
m
= © e
Gu(x) =Y [1— (1 gDV (L)) ()~ <a<l, (20)
k:zl [ ( ‘ k ‘ ) ] ‘D'y 1( )‘ 2

where m > 0 plays the role of regularization parameter and a is called the fractional parameter.

Lemma 5.1. For & > 0, and combining the estimation of (16), we get

1—Ca(7) 1 71 (=L"VE) _
— = <Dl (L) = 21
& K (L) = Ck - Ck @)
Lemma5.2. ForO0<¢<1,p>0,meN,letry,(c):= (1—g)", the following inequality holds:
rm(g)g? < 6p(m+1)7F, (22)
where
1, 0<p<1
0, = { =P= (23)
pt, p>1

Lemma 5.3. For & > 0and } <a < 1,0 < 5]DZ’1(L)]2 <1,n > 1, it gives

sup[l—(1—,8|DZ11(L)|2>”]04‘D71 ‘_\f\f (24)

>0

Lemma5.4. For 1 <a < 1,n>1,& > 0,0 < |DI(L)|* < 1, one has

n s
sup (1 B[Py (L))" 1D (L)]F < J(Bs)n )
Gk>0
where the constant C(B,s) = (ﬁ)%,
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- -2 .
where n > 1 acts as a regularization parameter, 0 < B < ‘Dz’l (L)‘ , and « is called the
fractional parameter. The following theorem gives a result about convergence.

2
Theorem 5.5. Let n = L(%) mJ . If the a-priori condition (17) and the noise assumption (4) hold, we
have
HQ,‘z—gHHis oforderéﬁ. (26)

where
|n| < sand it also is the largest integer
C1,Cy are depending on B, s, «, C and positive constants.

Proof. Applying triangle inequality, we have
162 = Glly, <1162 = Gully +1G = Gully, = T + T2 27)
From Lemma 5.3 and (5.3), we have

L = ng - gﬂHH
¥ (1= (1= B W) T e

k=1 ‘Dw )|
) _(1- gl (121"
<o [1= (122 OF)]" gy = VBVAS. =

From Lemma 5.4 and the a-priori bound condition (17), we can deduce that

I = H(] - g”HH
S D N e A W e

or

(1-piop ‘2)"555'\§g§£'<ef;\ekHﬂ

(1-BIDP W) Eeidfead|,

< &sup (1- gD (L)) &

=~

—_

IN

(.

Gk>0
< &sup (1- PP (L)) c=*[Dp' (1)
¢k>0
< ECi(B,s)Cn2. (29)
From (28) and (29), we obtain
1G5 — G||,, < Brm2é + Ec(B, p)C~*n" %, (30)

n is chosen by

n= {(i)MJ, (31)

we then obtain the following convergence estimate

162 — G|, < (C1+Cp) E71571, .
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6 Convergence analysis and a-posteriori parameter choice rule

We need a reliable stopping rule to detect the significant change from convergence to divergence
because of the semi-convergent nature of repetitive regularization methods for ill-posed prob-
lems. In this section, following the parameter selection rule, we give an a-posteriori parameter
selection rule from which the rate of convergence for the regularization solution (1) to this
fractional Landweber method can be inferred. We can be formulated the Morozov’s discrepancy
principle is the general a-posteriori rule is according [1] as:

DN (LGS — £| < Ad. (33)

where A > 11is a user-supplied constant independent of §,n > 0 is the regularization parameter
which makes (33) hold at the first iteration time, and K is the forward operator defined by (16).

Lemma 6.1. Let p(m) = | D' (L)GS — f°|

gy We have

e o(n) is a continuous functzon,
o lim,0p(n) = || f°||,,
e lim, o p(n) =0;

* p(n) is a strictly decreasing function over (0,00).

Proof. From (33), we obtain
= 2 1—1—(1— ‘Dm(L)‘Z)”T‘ 2‘< ’ >‘2 : (34)
o) (kl { [ ( PPy ] S >

Since

imotn) = (55170 =171 @

n—0

We assume that the noisy data || f° HH is large enough such that 0 < A8 < ||
Lemma 5.4, there exists a unique minimal solution for the inequality (36).

HH. According to
Ul

Lemma 6.2. If n make (33) hold at the first time, we have

1
1 @H—l s+ g ﬁ
where
L 0<s<1,
6%“(%9%,s>1 7)
Proof. From the definition of n and Lemma 5.2, we obtain
A8 <Dt wygh - £,
) 117
_ ZP P_]fmpﬂ }fl}kﬂqm
k=1 H
0 n—1
<| L (-pprwP) - frea
k=1 H
o n—1
X (=D @) (fee (38)
k=1 H
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Hence, we have

y1y2Y —s
A6 <o+ Esup (1-BDF (L)P) IDF(L)IG

Gk>0
n— s41 s
<é+C °Esup <1 - ﬁ‘DZ’l(L)f) ' (,B‘DZl(L)‘z) i 5_%1
Sk>0
< 5+c—55®%(n5)—% (39)
This yields
1 O ST 8N
O
Theorem 6.3. If the noise assumption 4 hold and the a-priori condition (17) then
5 A1\ e o] PR
165 =3dlly, < | (55—) +(C(AZ_1)) ghiget, (41)
Proof. By the triangle inequality, we have
162 = Glls < 19 = Gullyy +1G = Gl = T + L. (42)
From 28, we have
L= 6~ Gl < VBVIO < ooy ) €10, (#3)
Applying the a-priori bound condition (17), we know that
L =g - g””?—t
=Y [1 - [1 - (1 —,B|DZJ(L)‘2> } } (fex)er|,
k=1
<X (1-BIDF D) (Frende
k=1 H
00 " a1
<| X (1= DI WF) (fee
k=1 H
1
00 s+1
< || 2 (1= B 1) 66 een (a4)
k=1 H

Thank to Holder inequality, using the triangle inequality, it gives

n< (| £ 0 o WP gy - e
+ X (-l )’ ,DZ}(L)‘ <f5,ek>eku) Laaiea|,

s 1 1 Hil
< (64 Ad) 1 EH sup ()
&0 \&| DI (L)

§<A21>M5#wﬁu (45)
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Combining (43), (44) and (45), we obtain the convergence estimate. Thus, formula (41) of
Theorem 6.3 has been proven. O
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