Global attractors of the delay 2D Navier-Stokes equations on unbounded Channel-like domains

Zhang Zhang ${ }^{1(0)}$, Xiaobin Yao ${ }^{1, *}$ (D)
1. School of Mathematics and Statistics, Qinghai Minzu University, Xining, Qinghai, 810007, P.R. China
* Corresponding author

Abstract

This paper studies the global attractors of 2D Navier-Stokes equations with delay defined in unbounded Channel-like domains. To overcome the non-compactness of solutions, we will use the uniform tail-ends estimates of the solutions by establishing all the solutions are uniformly small.

Key words: Navier-Stokes equations, global attractors, uniform tail-ends estimates 2020 Mathematics Subject Classification: 35B40, 35B41
Article history: Received 10 Nov 2023; Accepted 15 Mar 2024; Online 23 Mar 2024

1 Introduction

This paper considers the 2D Navier-Stokes equations defined on $\mathcal{O}=\mathbb{R} \times(0, d)$:

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+(u \cdot \nabla) u=g\left(u_{t}\right)+\nabla p+f(x), \operatorname{div} u=0 \tag{1}\\
u(t, x)=0, t>0, x \in \partial \mathcal{O} \\
u(0, x)=u_{0}(x), x \in \mathcal{O} \\
u(x, t)=\phi(t-\tau, x), t \in(\tau-h, \tau), x \in \mathcal{O}
\end{array}\right.
$$

where u and p are the velocity and the pressure of the fluid. $f \in L^{2}(\mathcal{O})$ is given, g is a Lipschitz nonlinear function with delay, $r \geq 0$ is constants,

$$
u_{t}(\theta)=u(t+\theta), \forall \theta \in(-r, 0) .
$$

When (1) does not contain the delay term, Wang has investigated the existence of the global attractors of the 2D Navier-Stokes equations on the Channel-like unbounded domains in [1]. In recent years, significant results have been investigated in the study of attractors for 2D Navier-Stokes with delay. Carabello has studied the attractors of 2D Navier-Stokes equations

[^0]with delay on bounded domains in reference [2], and then proved the existence of pull-back attractors for non-autonomous delay 2D Navier-Stokes equations on unbounded domains. This paper mainly studied the asymptotic compactness of the solutions of (1) on unbounded channellike domains \mathcal{O}. We use the existence, stability, and convergence of the global attractors to show the long-time asymptotic behavior of the solutions. We have known Sobolev embeddings on unbounded domains are no longer compact (see reference [3]). In unbounded domains, the main difficulty is the non-compactness of Sobolev embeddings.

In fact, we can overcome the difficulty by Rosa's idea of the Ball energy equations proposed (in reference [4, 5]), which is the method to establish asymptotic compactness of (1) solutions when \mathcal{O} is unbounded in the phase space $L^{2}\left(\mathcal{O}, \mathbb{R}^{2}\right)$ (see references $\left.[2,6,7,8,9,10]\right)$. In order to overcome the non-compactness of Sobolev embeddings in unbounded domains, we used uniform tail-ends estimates methods for the solutions proposed in reference [11] to prove the asymptotic compactness of the solution to the reaction-diffusion equations on \mathbb{R}^{n} (see references [12, 13]).

In this paper, we will derive the uniform tail-ends estimates of solutions under supposed conditions $p=0$ and $\operatorname{div} u=0$. We will use uniform tail-ends estimates of the scalar stream function for the Navier-Stokes equations (see [6, 12]). By uniform estimates of solutions, we will prove the asymptotic compactness of solutions of (1) defined in \mathcal{O} and the existence of global attractors for (1) in H.

This paper is organized as follows, we will recall some basic concepts and results in Section 2. In Section 3, we will prove the uniform estimates of 2D Navier-Stokes equations of the solutions in H and V. We will prove the asymptotic compactness of solutions and the existence of global attractors in H.

In the paper, we denote norm $\|\cdot\|$ and inner product (\cdot, \cdot) of the $L^{2}\left(\mathcal{O}, \mathbb{R}^{2}\right)$. We also denote norm $\|u\|_{V}=\|\nabla u\|$ for $u \in V$ of V and dual space V^{*} is labeled as $\langle\cdot, \cdot\rangle$ and denote the norm $(\cdot, \cdot)_{C_{H}}$ and the inner product $\|\cdot\|_{C_{H}}$ of the $C_{H}=(-r, 0 ; H)$.

2 Preliminaries

In this section, we review some basic results and knowledge.
The Poincare inequality:

$$
\begin{equation*}
\|\nabla u\|^{2} \geq \lambda\|u\|^{2}, \quad \forall u \in H_{0}^{1}\left(\mathcal{O}, \mathbb{R}^{2}\right) \lambda>0 . \tag{2}
\end{equation*}
$$

Let $u, v, w \in V$, we denoted

$$
\begin{equation*}
b(u, v, w)=\sum_{i, j=1}^{2} \int_{\mathcal{O}} u_{i} \frac{\partial v_{j}}{\partial x_{i}} w_{j} d x . \tag{3}
\end{equation*}
$$

For all $u, v, w \in V$,

$$
b(u, v, w)=-b(u, w, v), b(u, v, v)=0
$$

and

$$
\begin{equation*}
|b(u, v, w)| \leq\|u\|_{L^{4}(\mathcal{O})}\|\nabla v\|\|w\|_{L^{4}(\mathcal{O})} \leq c\|u\|_{V}\|v\|_{V}\|w\|_{V} \tag{4}
\end{equation*}
$$

with every $c>0$.
By(3), denote a bilinear operator $B: V \times V \rightarrow V^{*}$, for every $u, v, w \in V$,

$$
\langle B(u, v), w\rangle=b(u, v, w),
$$

By (4) for all $u, v \in V$, we have

$$
\|B(u, v)\|_{V^{*}} \leq c\|u\|_{V}\|v\|_{V},
$$

For $u \in V \cap H^{2}\left(\mathcal{O}, \mathbb{R}^{2}\right)$, we also have

$$
\|B(u, u)\| \leq c\|u\|^{\frac{1}{2}}\|\nabla u\|\|\Delta u\|^{\frac{1}{2}} .
$$

We suppose

$$
\alpha=\lambda-L_{g} .
$$

We will make appropriate suppose for the delay term. Let $g:(-r, 0 ; H) \rightarrow L^{2}\left(\mathcal{O}, \mathbb{R}^{2}\right)$ satisfy the following conditions:
(1) $g(0)=0$;
(2) there exists $L_{g}>0$, such that $\forall \xi, \eta \in(-r, 0 ; H)$

$$
\begin{equation*}
|g(\xi)-g(\eta)| \leq L_{g}\|\xi-\eta\|_{c_{H}} . \tag{5}
\end{equation*}
$$

3 Uniform estimates of solutions of 2D Navier-Stokes equations

We will prove the uniform estimates of solutions of (1) in H and V.
Lemma 3.1. Let (5) holds, then for every $u_{0} \in H$, the solution \widetilde{u} of (1) satisfies for all $t \geq 0$,

$$
\|\widetilde{u}(t)\|^{2}+\frac{3}{2} \int_{0}^{t} e^{-4 L_{s}^{2}(s-t)}\|\widetilde{u}(s)\|_{V}^{2} d s \leq e^{4 L_{8}^{2} t}\left\|\widetilde{u}_{0}\right\|^{2}+C_{1},
$$

and for all $t \geq r \geq 0$,

$$
\frac{3}{2} \int_{0}^{t} e^{-4 L_{g}^{2}(s-t)}\|\widetilde{u}(s)\|_{V}^{2} d s \leq e^{4 L_{g}^{2} r}\left\|\widetilde{u}_{0}\right\|^{2}+C_{1}(1+t-r),
$$

where $C_{1}>0$ is a constant independent of t, r or u_{0}.
Proof of Lemma 3.1. Suppose $t>0$,

$$
\begin{equation*}
\left\|\partial_{t} \widetilde{u}(t)\right\|^{2}+2\|\nabla \widetilde{u}(t)\|^{2}=2\left(g\left(\widetilde{u_{t}}\right), \widetilde{u}(t)\right)+2(f, \widetilde{u}(t)) . \tag{6}
\end{equation*}
$$

Along with (5), we obtain

$$
2\left(g\left(u_{t}\right), \widetilde{u}(t)\right) \leq 2 L_{g}\left\|\widetilde{u}_{t}\right\|_{c_{H}}\|\widetilde{u}\| \leq \frac{1}{2}\left\|\widetilde{u}_{t}\right\|_{\mathcal{C}_{H}}^{2}+2 L_{g}^{2}\|\widetilde{u}\|^{2} .
$$

and by Young's inequality, we get

$$
\begin{equation*}
2(f, \widetilde{u}(t)) \leq \frac{\|f\|^{2}}{2 L_{g}^{2}}+2 L_{g}^{2}\|\widetilde{u}\|^{2} . \tag{7}
\end{equation*}
$$

By (2) and (6)-(7) for $t>0$, we have

$$
\begin{equation*}
\left\|\partial_{t} \widetilde{u}(t)\right\|^{2}+2\|\nabla \widetilde{u}(t)\|^{2} \leq \frac{1}{2}\left\|\widetilde{u}_{t}\right\|_{C_{H}}+4 L_{g}^{2}\|\widetilde{u}\|^{2}+\frac{\|f\|^{2}}{L_{g}^{2}} . \tag{8}
\end{equation*}
$$

Solve (8) to obtain for all $t \geq 0$,

$$
\begin{equation*}
\|\widetilde{u}(t)\|^{2}+2 \int_{0}^{t} e^{-4 L_{g}^{2}(s-t)}\|\nabla \widetilde{u}(s)\|^{2} d s \leq e^{4 L_{g}^{2} t}\left\|\widetilde{u}_{0}\right\|^{2}+e^{4 L_{g}^{2} t} \frac{\|f\|^{2}}{2 L_{g}^{2}} . \tag{9}
\end{equation*}
$$

Integrating (8) on (r,t) with $0 \leq r \leq t$, by (9) we have

$$
2 \int_{r}^{t}\|\nabla \widetilde{u}(s)\|^{2} d s \leq\|\widetilde{u}(r)\|^{2}+\frac{\|f\|^{2}}{2 L_{g}^{2}}(t-r) \leq e^{4 L_{g}^{2} r}\left\|\widetilde{u}_{0}\right\|^{2}+e^{4 L_{g}^{2}} \frac{t f \|^{2}}{2 L_{g}^{2}}+\frac{\|f\|^{2}}{2 L_{g}^{2}}(t-r) .
$$

This completes the proof.

We next prove the uniform estimates of solutions of (1) in V for $t>0$ with initial data in H.
Lemma 3.2. Let (5) holds, for every $u_{0} \in H$, the solutions \bar{u} of (1) satisfies for all $t \geq 1$,

$$
\|\nabla \bar{u}(t)\|^{2}+\int_{t}^{t+1}\|\Delta \bar{u}(s)\|^{2} d s+\int_{t}^{t+1}\left\|\partial_{t} \bar{u}(s)\right\|^{2} d s \leq C_{2}
$$

where $C_{2}>0$ is a constant dependent of λ, L_{g} and u_{0}.
Proof of Lemma 3.2. By a limiting process, we will derive the uniform estimates for $t \geq 0$,

$$
\begin{equation*}
\left\|\partial_{t} \nabla \bar{u}(t)\right\|^{2}+2\|\Delta \bar{u}(t)\|^{2}=2(B(\bar{u}(t), \bar{u}(t)), \Delta \bar{u}(t))-2\left(g\left(\bar{u}_{t}(t)\right), \Delta \bar{u}(t)\right)-2(f, \Delta \bar{u}(t)) . \tag{10}
\end{equation*}
$$

We first estimate the first term of (10)

$$
\begin{aligned}
2(B(\bar{u}(t), \bar{u}(t)), \Delta \bar{u}(t)) & \leq\|u\|_{L^{4}\left(\mathcal{O}, \mathbb{R}^{2}\right)}\|\nabla \bar{u}\|_{L^{4}\left(\mathcal{O}, \mathbb{R}^{4}\right)}\|\Delta \bar{u}\| \\
& \leq c_{1}\|\bar{u}\|^{\frac{1}{2}}\|\nabla \bar{u}\|\|\Delta \bar{u}\|^{\frac{3}{2}} \leq \frac{1}{2}\|\Delta \bar{u}\|^{2}+c_{2}\|\bar{u}\|^{2}\|\nabla \bar{u}\|^{4}
\end{aligned}
$$

where $c_{2}>0$ on \mathcal{O}. Combining (5) and Young's inequality, we have

$$
-2\left(g\left(\bar{u}_{t}(t)\right), \delta \bar{u}(t)\right)-2(f, \Delta \bar{u}(t)) \leq \frac{1}{4}\left\|\bar{u}_{t}\right\|_{C_{H}}^{2}+8\|f\|^{2}+8 L_{g}^{2}\|\nabla \bar{u}\|^{2} .
$$

It follows from (10)-(3.9) that for $t>0$,

$$
\begin{equation*}
\left\|\partial_{t} \nabla \bar{u}(t)\right\|^{2}+\frac{3}{2}\|\Delta \bar{u}(t)\|^{2} \leq c_{2}\|\bar{u}\|^{2}\|\nabla \bar{u}\|^{4}+8\|f\|^{2}+8 L_{g}^{2}\|\nabla \bar{u}\|^{2} . \tag{11}
\end{equation*}
$$

By Lemma 3.1 for all $t \geq 0$, we obtain

$$
\|\bar{u}(t)\|^{2}+\int_{t}^{t+1}\|\bar{u}(s)\|_{V}^{2} d s \leq c_{3}
$$

with $c_{3}>0$ depends on λ, L_{g}, f and u_{0}, we have

$$
\int_{t}^{t+1}\|\nabla \bar{u}(s)\|^{2} d s \leq c_{3}, \quad \int_{t}^{t+1}\|\bar{u}(s)\|^{2}\|\nabla \bar{u}(s)\|^{2} d s \leq c_{3}^{2}
$$

and by Gronwall Lemma, we have

$$
\|\nabla \bar{u}(t)\|^{2} \leq c_{4}
$$

where $c_{4}>0$ depends on λ, L_{g}, f and u_{0}.
Integrating from t to $t+1$ for (11), we obtain

$$
\int_{t}^{t+1}\|\bar{u}(s)\|^{2} d s \leq c_{5}
$$

with $c_{5}>0$ depends on λ, L_{g}, f and u_{0}. The proof is complete.
We have proved the following uniform estimates for the large time by Lemma 3.2.
Lemma 3.3. Let $R>0$, there exists $T_{0}=T_{0}(R)>0$ such that for all $t \geq T_{0}$ and $u_{0} \in H$ with $\left\|u_{0}\right\| \leq R$, the solutions u of (1) satisfies

$$
\|\nabla u(t)\|^{2}+\int_{t}^{t+1}\|\Delta u(s)\|^{2} d s+\int_{t}^{t+1}\left\|\partial_{t} u(s)\right\|^{2} \leq C_{3}
$$

with $C_{3}>0$ is constant dependent of λ, L_{g} and f.

4 Uniform tail-end estimates of the solutions

We will the asymptotic compactness of the solutions of (1) by Uniform tail-end estimates of the solutions. Furthermore, we will obtain the existence of global attractors in H.

Suppose a smooth function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ for $0 \leq \phi \leq 1$ and

$$
\phi(s)=0,|s| \leq \frac{1}{2} ; \quad \phi(s)=1,|s| \leq 1 .
$$

If $C>0$ and $\left|\phi^{\prime}(s)\right|+\left|\phi^{\prime \prime}(s)\right| \leq C$. Let $n \in \mathbb{N}$ and $x=\left(x_{1}, x_{2}\right) \in \mathcal{O}$, let $\phi_{n}(x)=\phi\left(\frac{n_{1}}{k}\right)$.
We first give the following inequalities.

Lemma 4.1.

(a) Let $u \in H^{1}(\mathcal{O})$, then

$$
\left|\left\|\phi_{n} \nabla u\right\|-\left\|\nabla\left(\phi_{n} u\right)\right\|\right| \leq \frac{C_{4}}{n}\|u\| .
$$

(b) Let $u \in H^{2}(\mathcal{O})$, then

$$
\left|\left\|\phi_{n} \Delta u\right\|-\left\|\Delta\left(\phi_{n} u\right)\right\|\right| \leq \frac{C_{4}}{n}\|u\|_{H^{1}(\mathcal{O})} .
$$

(c) Let $u \in H_{0}^{1}(\mathcal{O})$, then

$$
\left\|\phi_{n} \nabla u\right\| \geq \lambda^{\frac{1}{2}}\left\|\phi_{n} u\right\|-\frac{C_{4}}{n}\|u\| .
$$

(d) If $u \in H^{2}(\mathcal{O}) \cap H_{0}^{1}(\mathcal{O})$, then

$$
\left\|\phi_{n} \Delta u\right\| \geq \lambda^{\frac{1}{2}}\left\|\phi_{n} \nabla u\right\|-\frac{C_{4}}{n}\|u\|_{H^{1}(\mathcal{O})},
$$

where $C_{4}>0$ is a constant independent of n and u.
Proof of Lemma 4.1.
(a) Note that $\nabla\left(\phi_{n} u\right)=u \nabla \phi_{n}+\phi_{n} \nabla u$,

$$
\left|\left\|\phi_{n} \nabla u\right\|-\left\|\nabla\left(\phi_{n} u\right)\right\|\right| \leq\left\|\phi_{n} \nabla u-\nabla\left(\phi_{n} u\right)\right\|=\left\|u \nabla \phi_{n}\right\| \leq \frac{c}{n}\|u\|,
$$

with $c>0$ is a constant independent of n and u.
(b) Suppose $\Delta\left(\phi_{n} u\right)=u\left(\Delta \phi_{n}\right)+\phi_{n}(\Delta u)+2 \nabla \phi_{n} \cdot \nabla u$ such that

$$
\left\|\phi_{n}(\Delta u)-\Delta\left(\phi_{n} u\right)\right\| \leq\left\|u\left(\Delta \phi_{n}\right)\right\|+2\left\|\nabla \phi_{n} \cdot \nabla u\right\| \leq \frac{c}{n}(\|u\|+\|\nabla u\|) .
$$

(c) If $\left\|\nabla\left(\phi_{n} u\right)\right\| \geq \lambda^{\frac{1}{2}}\left\|\phi_{n} u\right\|$, by (a) we have $\left\|\phi_{n} \nabla u\right\| \geq \lambda^{\frac{1}{2}}\left\|\phi_{n} u\right\|-\frac{c}{n}\|u\|$.
(d)

$$
\begin{array}{r}
\left\|\nabla\left(\phi_{n} u\right)\right\|^{2}=\left(\nabla\left(\phi_{n} u\right), \nabla\left(\phi_{n} u\right)\right)=-\left(\Delta\left(\phi_{n} u\right), \phi_{n} u\right) \\
\leq\left\|\Delta\left(\phi_{n} u\right)\right\|\left\|\phi_{n} u\right\| \leq \lambda^{\frac{1}{2}}\left\|\Delta\left(\phi_{n} u\right)\right\|\left\|\nabla\left(\phi_{n} u\right)\right\|
\end{array}
$$

and $\left\|\nabla\left(\phi_{n} u\right)\right\| \leq \lambda^{-\frac{1}{2}}\left\|\Delta\left(\phi_{n} u\right)\right\|$. By (a) and (b) we have

$$
\begin{array}{r}
\left\|\phi_{n} \nabla u\right\| \leq\left\|\nabla\left(\phi_{n} u\right)\right\|+\frac{c_{2}}{n}\|u\| \leq \lambda^{-\frac{1}{2}}\left\|\Delta\left(\phi_{n} u\right)\right\|+\frac{c_{2}}{n}\|u\| \\
\leq \lambda^{-\frac{1}{2}}\left(\left\|\phi_{n} \Delta u\right\|+\frac{c_{3}}{n}\|u\|_{H^{1}(\mathcal{O})}\right)+\frac{c_{2}}{n}\|u\| \leq \lambda^{-\frac{1}{2}}\left\|\phi_{n} \Delta u\right\|+\frac{c_{4}}{n}\|u\|_{H^{1}(\mathcal{O})}
\end{array}
$$

which shows that

$$
\lambda^{\frac{1}{2}}\left\|\phi_{n} \nabla u\right\| \leq\left\|\phi_{n} \Delta u\right\|+\frac{c_{4}}{n} \lambda^{\frac{1}{2}}\|u\|_{H^{1}(\mathcal{O})} .
$$

This proof is complete.

Furthermore, we give a scalar stream function for (1). Let $u=\left(u_{1}, u_{2}\right) \in V$ and $x=$ $\left(x_{1}, x_{2}\right) \in \overline{\mathcal{O}}$, define

$$
\widehat{u}(x)=\widehat{u}\left(x_{1}, x_{2}\right)=\int_{(0,0)}^{\left(x_{1}, x_{2}\right)}-u_{2} d x_{1}+u_{1} d x_{2} .
$$

Since $u=1$ on $\partial \mathcal{O}$ and $\operatorname{div}(u)=0$ in \mathcal{O}.
Then, we get

$$
\begin{equation*}
\partial_{x_{1}} \widehat{u}=-u_{2}, \quad \partial_{x_{2}} \widehat{u}=u_{1}, \tag{12}
\end{equation*}
$$

and

$$
\left.\widehat{u}\right|_{\partial \mathcal{O}}=0,\left.\quad \nabla \widehat{u}\right|_{\partial \mathcal{O}}=0 .
$$

If T is the curl operator that has

$$
\begin{equation*}
T u=\partial_{x_{2}} u_{1}-\partial_{x_{1}} u_{2}, \forall u=\left(u_{1}, u_{2}\right) . \tag{13}
\end{equation*}
$$

By (12) and (13), we have

$$
\begin{equation*}
\partial_{t} \Delta \widehat{u}=\Delta^{2} \widehat{u}+\widehat{B}(\widehat{u}, \widehat{u})+\widehat{g}\left(u_{t}\right)+\widehat{f}, \tag{14}
\end{equation*}
$$

where

$$
\widehat{g}\left(u_{t}\right)=T\left(g\left(u_{t}\right)\right), \widehat{f}=T f, \quad \widehat{B}(\widehat{u}, \widehat{u})=\partial_{x_{2}}\left(\left(\partial_{x_{1}} \widehat{u}\right) \Delta \widehat{u}\right)-\partial_{x_{2}}\left(\left(\partial_{x_{2}} \widehat{u}\right) \Delta \widehat{u}\right) .
$$

Let $n \in \mathbb{N}$, we denote $\mathcal{O}_{n}=(-n, n) \times(0, d)$. By (14), we prove the uniform tail-end estimates of the solutions of (1) on $\mathcal{O} \backslash \mathcal{O}_{n}$ as below.

Lemma 4.2. Let $u_{0} \in H$ and $\varepsilon>0$, there exists $\mathcal{N}=\mathcal{N}\left(\lambda, L_{g}, f, u_{0}, \varepsilon\right) \geq 1$ such that the solution u of (1) satisfies, for all $n \geq N$ and $t \geq 1$,

$$
\int_{\mathcal{O} \backslash \mathcal{O}_{k}}|u(t, x)|^{2} d x \leq \varepsilon .
$$

Proof of Lemma 4.2. We prove the uniform estimates of the solutions by a limiting process. By (14) we get

$$
\begin{align*}
-\frac{d}{d t}\left(\Delta \widehat{u}, \phi_{n}^{2} \widehat{u}\right) & =-\left(\Delta^{2} \widehat{u}, \phi_{n}^{2} \widehat{u}\right)-\left(\widehat{B}(\widehat{u}, \widehat{u}), \phi_{n}^{2} \widehat{u}\right)-\left(\widehat{g}\left(u_{t}\right), \phi_{n}^{2} \widehat{u}\right)-\left(\widehat{f}, \phi_{n}^{2} \widehat{u}\right) \\
& =J_{i}(i=1,2,3) . \tag{15}
\end{align*}
$$

For the left-hand side of (15) we get

$$
\begin{array}{r}
-\frac{d}{d t}\left(\Delta \widehat{u}, \phi_{n}^{2} \widehat{u}\right)=\frac{1}{2} \frac{d}{d t} \int_{\mathcal{O}} \phi_{n}^{2}|\nabla \widehat{u}|^{2} d x+\int_{\mathcal{O}}\left(\nabla \widehat{u}_{t}, \nabla \phi_{n}^{2}\right) \widehat{u} d x \\
\geq \frac{1}{2} \frac{d}{d t} \int_{\mathcal{O}} \phi_{n}^{2}|\nabla \widehat{u}|^{2} d x-\frac{c_{1}}{n}\left\|\nabla \widehat{u}_{t}\right\|\|\widehat{u}\|,
\end{array}
$$

where $c_{1}>0$ is independent of n. For the J_{1} of (15) we obtain

$$
\begin{align*}
J_{1}=-\left(\Delta^{2} \widehat{u}, \phi_{n}^{2} \widehat{u}\right) & =-\int_{\mathcal{O}} \Delta \widehat{u}\left(\phi_{n}^{2} \Delta \widehat{u}+\left(\Delta \phi_{n}^{2}\right) \widehat{u}+2 \nabla \phi_{n}^{2} \cdot \nabla \widehat{u}\right) d x \\
& \leq-\left\|\phi_{n} \Delta \widehat{u}\right\|^{2}+\frac{c_{2}}{n^{2}}\|\widehat{u}\|\|\Delta \widehat{u}\|+\frac{c_{2}}{n}\|\nabla \widehat{u}\|\|\Delta \widehat{u}\| . \tag{16}
\end{align*}
$$

By Lemma4.1 we suppose exists $c_{3}>0$ independent of k such that

$$
\lambda^{\frac{1}{2}}\left\|\phi_{n} \nabla \widehat{u}\right\| \leq\left\|\phi_{n} \Delta \widehat{u}\right\|+\frac{c_{3}}{n}\|\widehat{u}\|_{H^{1}(\mathcal{O})}
$$

and hence by Young's inequality, we have

$$
\begin{aligned}
\lambda\left\|\phi_{n} \nabla \widehat{u}\right\|^{2} & \leq\left\|\phi_{n} \Delta \widehat{u}\right\|^{2}+\frac{2 c_{3}}{n}\left\|\phi_{n} \Delta \widehat{u}\right\|\|\widehat{u}\|_{H^{1} \mathcal{O}}+\frac{c_{3}^{2}}{n^{2}}\|\widehat{u}\|_{H^{1} \mathcal{O}} \\
& \leq\left\|\phi_{n} \Delta \widehat{u}\right\|^{2}+\frac{\alpha}{4 \lambda-\alpha}\left\|\phi_{n} \Delta \widehat{u}\right\|^{2}+\frac{(4 \lambda-\alpha) c_{3}^{2}}{\alpha n^{2}}\|\widehat{u}\|_{H^{1}(\mathcal{O})}^{2}+\frac{c_{3}^{2}}{n^{2}}\|\widehat{u}\|_{H^{1}(\mathcal{O})}^{2} \\
& =\frac{4 \lambda}{4 \lambda-\alpha}\left\|\phi_{n} \Delta \widehat{u}\right\|^{2}+\frac{4 \lambda c_{3}^{2}}{\alpha n^{2}}\|\widehat{u}\|_{H^{1}(\mathcal{O})}^{2} .
\end{aligned}
$$

we have

$$
-\left\|\phi_{n} \Delta \widehat{u}\right\|^{2} \leq\left(\frac{1}{4} \alpha-\lambda\right)\left\|\phi_{n} \nabla \widehat{u}\right\|^{2}+\frac{(4 \lambda-\alpha) c_{3}^{2}}{\alpha n^{2}}\|\widehat{u}\|_{H^{1}(\mathcal{O})^{\prime}}^{2}
$$

By (16) and (17) we have

$$
-\left(\Delta^{2} \widehat{u}, \phi_{n}^{2} \widehat{u}\right) \leq\left(-\frac{1}{4} \alpha-\lambda\right)\left\|\phi_{n} \nabla \widehat{u}\right\|^{2}+\frac{c_{4}}{n}\|\Delta \widehat{u}\|^{2},
$$

where $c_{4}>0$ is independent of n.
For the J_{2} of (15), we obtain

$$
\begin{aligned}
J_{2}=-\left(\widehat{B}(\widehat{u}, \widehat{u}), \phi_{n}^{2} \widehat{u}\right) & =-\int_{\mathcal{O}} \widehat{u}(\Delta \widehat{u})\left(\partial_{x_{2}} \widehat{u}\right)\left(\partial_{x_{1}} \phi_{n}^{2}\right) d x \\
& \leq \frac{c_{5}}{n}\|\Delta \widehat{u}\|\|\widehat{u}\|_{\left.L_{(}^{4} \mathcal{O}\right)}\left\|\partial_{x_{2}} \widehat{u}\right\|_{L^{4}(\mathcal{O})} \\
& \leq \frac{c_{6}}{n}\|\widehat{u}\|^{\frac{3}{2}}\|\nabla \widehat{u}\|^{\frac{3}{2}} \leq \frac{c_{7}}{n}\left(\|\Delta \widehat{u}\|^{2}+\|\nabla \widehat{u}\|^{6}\right),
\end{aligned}
$$

where $c_{7}>0$ is independent of n.
Suppose $g\left(u_{t}\right)=\left(g_{1}\left(u_{t}\right), g_{2}\left(u_{t}\right)\right)$ and $f=\left(f_{1}, f_{2}\right)$. Then for J_{3} of (15), by (5), (12) we have

$$
\begin{align*}
-\left(\widehat{g}\left(u_{t}\right), \phi_{n}^{2} \widehat{u}\right) & -\left(\widehat{f}, \phi_{n}^{2} \widehat{u}\right)=\int_{2}\left(-g_{2}\left(u_{t}\right), g_{1}\left(u_{t}\right)\right) \cdot \nabla\left(\phi_{n}^{2} \widehat{u}\right) d x+\int_{\mathcal{O}}\left(-f_{2}, f_{1}\right) \cdot \nabla\left(\phi_{n}^{2} \widehat{u}\right) d x \\
& \leq \int_{\mathcal{O}} \phi_{n}^{2}|\nabla \widehat{u}|\left(\left|g\left(u_{t}\right)\right| C_{H}+|f|\right) d x+\int_{\mathcal{O}}|\widehat{u}|\left(\left|g\left(u_{t}\right)\right|+|f|\right)\left|\nabla \phi_{n}^{2}\right| d x \\
& \leq L_{g} \int_{\mathcal{O}} \phi_{n}^{2}|\nabla \widehat{\mathcal{u}}|_{C_{H}}^{2} d x+\int_{\mathcal{O}} \phi_{n}^{2}|\nabla \widehat{u}||f| d x+\int_{\mathcal{O}}|\widehat{u}|\left(L_{g}|\nabla \widehat{u}|+|f|\right)\left|\nabla \psi_{n}^{2}\right| d x \\
& \leq\left(L_{g}+\frac{1}{4} \alpha\right) \int_{\mathcal{O}} \phi_{n}^{2}|\nabla \widehat{u}|_{C_{H}}^{2} d x+\frac{1}{\alpha} \int_{\mathcal{O}} \phi_{n}^{2}|f|^{2} d x+\frac{c_{8}}{n}\left(\|\nabla \widehat{u}\|^{2}+\|f\|^{2}\right), \tag{17}
\end{align*}
$$

where $c_{8}>0$ is independent of n. which along with (15)-(17) we have

$$
\begin{equation*}
\frac{d}{d t}\left\|\phi_{n} \nabla \widehat{u}\right\|^{2}+\alpha\left\|\phi_{n} \nabla \widehat{u}\right\|^{2} \leq \frac{c_{9}}{n}\left(\left\|\nabla \widehat{u}_{t}\right\|_{C_{H}}^{2}+\|\nabla \widehat{u}\|^{6}+\|\Delta \widehat{u}\|^{2}+\|f\|^{2}\right)+c_{9}\left\|\phi_{n} f\right\|^{2}, \tag{18}
\end{equation*}
$$

with $c_{9}>0$ is independent of n.
combining (12) and (18), we have

$$
\begin{equation*}
\left\|\partial_{t} \phi_{n} u\right\|^{2}+\alpha\left\|\phi_{n} u\right\|^{2} \leq \frac{c_{9}}{n}\left(\left\|u_{t}\right\|_{\mathcal{C}_{H}}^{2}+\|u\|^{6}+2\|\nabla u\|^{2}+\|f\|^{2}\right)+c_{9}\left\|\phi_{n} f\right\|^{2} . \tag{19}
\end{equation*}
$$

Integrating (19) on ($1, t$) for $t \geq 1$ to have

$$
\begin{align*}
\left\|\phi_{n} u(t)\right\|^{2} & \leq e^{\alpha(1-t)}\left\|\phi_{n} u(1)\right\|^{2} \\
& +\frac{c_{9}}{n} \int_{1}^{t} e^{\alpha(s-t)}\left(\left\|u_{t}(s)\right\|_{C_{H}}^{2}+\|u(s)\|^{6}+2\|\nabla u(s)\|^{2}+\|f\|^{2}\right) d s+c_{9} \alpha^{-1}\left\|\phi_{n} f\right\|^{2} . \\
& =J_{i}(i=1,2,3) \tag{20}
\end{align*}
$$

For the J_{1} of (20), we have for $t \geq 1$,

$$
e^{\alpha(1-t)}\left\|\phi_{n} u(1)\right\|^{2} \leq \int_{\left\{\left(x_{1}, x_{2}\right) \in \mathcal{O}:\left|x_{1}\right| \geq \frac{1}{2} n\right\}}|u(1, x)|^{2} d x \rightarrow 0, n \rightarrow \infty .
$$

For the J_{2} of (20), by Lemma3.1 and Lemma3.2 we have for $t \geq 1$,

$$
\begin{aligned}
& \frac{c_{9}}{n} \int_{1}^{t} e^{\alpha(s-t)}\left(\left\|u_{t}(s)\right\|_{C_{H}}^{2}+\|u(s)\|^{6}+2\|\nabla u(s)\|^{2}+\|f\|^{2}\right) \\
& \leq \frac{c_{9}}{n}\left(c_{10}+\|f\|\right) \int_{1}^{t} e^{\alpha(s-t)} d s+\frac{c_{9}}{n} \int_{1}^{t} e^{\alpha(s-t)}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s \\
& \leq \frac{c_{9}}{n}\left(c_{10}+\|f\|\right)+\frac{c_{9}}{n}\left(\int_{1}^{2} e^{\alpha(s-t)}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s+\cdots+\int_{[t]}^{t} e^{\alpha(s-t)}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s\right) \\
& \leq \frac{c_{9}}{n}\left(c_{10}+\|f\|\right)+\frac{c_{9}}{n}\left(e^{\alpha(2-t)} \int_{1}^{2}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s+\cdots\right. \\
& \left.\quad+e^{\alpha([t]-t)} \int_{[t]-1}^{[t]}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s+\int_{[t]}^{t}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s\right) \\
& \leq \frac{c_{11}}{n}+\frac{c_{11}}{n}\left(e^{\alpha(2-t)}+\cdots+e^{\alpha(t t]-t)}\right) \leq \frac{c_{11}}{n}+\frac{c_{11}}{n} e^{\alpha([t]-t)} \sum_{j=0}^{\infty} r^{-\alpha j} \\
& \leq \frac{c_{11}}{n}+\frac{c_{11}}{n}\left(1-e^{-\alpha}\right)^{-1} \rightarrow 0, n \rightarrow \infty,
\end{aligned}
$$

with $c_{11}>0$ dependent of λ, L_{g}, f and u_{0}.
If $f \in H$, for the J_{3} of (20), we get

$$
\begin{equation*}
c_{9} \alpha^{-1}\left\|\phi_{n} f\right\|^{2}=c_{9} \alpha^{-1} \int_{\left\{\left(x_{1}, x_{2}\right) \in \mathcal{O}:\left|x_{1}\right| \geq \frac{1}{2} n\right\}}|f(x)|^{2} d x \rightarrow 0, n \rightarrow \infty . \tag{21}
\end{equation*}
$$

From (20)-(21) for every $\varepsilon>0$, then exists $N=N\left(\lambda, L_{g}, f, u_{0}, \varepsilon\right) \geq 1$, such that for all $t \geq 1$ and $n \geq N$,

$$
\int_{\left\{\left(x_{1}, x_{2}\right) \in \mathcal{O}:\left|x_{1}\right| \geq n\right\}}|u(t, x)|^{2} d x \leq\left\|\phi_{n} u(t)\right\|^{2} \leq \varepsilon .
$$

Next, we will consider the uniform tail-ends estimates of the solutions under bounded initial data in H.
Lemma 4.3. Let $R>0$ and $\varepsilon>0$, there exists $T_{1}=T_{1}\left(\lambda, L_{g}, f, R, \varepsilon\right)>0$ and $N=N\left(\lambda, L_{g}, f, \varepsilon\right) \geq$ 1 , such that if $u_{0} \in H$ with $\left\|u_{0}\right\| \leq R$, then the solution u of (1) satisfies, for all $t \geq T_{1}$ and $n \geq N$,

$$
\int_{\mathcal{O} \backslash \mathcal{O}_{n}}|u(t, x)|^{2} d x \leq \varepsilon .
$$

Proof of Lemma 4.3. Let $u_{0} \in H$ with $\left\|u_{0}\right\| \leq R$. By Lemma 3.3, we have that there exists $T_{0}=T_{0}(R)>0$ such that for all $t \geq T_{0}$,

$$
\begin{equation*}
\|\nabla u(t)\|^{2}+\int_{t}^{t+1}\left\|\partial_{t} u(s)\right\|^{2} d s \leq C_{1} \tag{22}
\end{equation*}
$$

where $C_{1}>0$ dependent of λ, L_{g} and f.
Integrating (19) on ($\left.T_{0}, t\right)$ for $t \geq T_{0}$, we obtain

$$
\begin{align*}
\left\|\phi_{n} u(u)\right\|^{2} & \leq e^{\alpha\left(T_{0}-t\right)}\left\|\phi_{n} u\left(T_{0}\right)\right\|^{2} \\
& +\frac{c_{9}}{n} \int_{T_{0}}^{t} e^{\alpha(s-t)}\left(\left\|u_{t}(s)\right\|_{\mathcal{C}_{H}}^{2}+\|u(s)\|^{6}+2\|\nabla u(s)\|^{2}+\|f\|^{2}\right) d s+c_{9} \alpha^{-1}\left\|\phi_{n} f\right\|^{2} \\
& =I_{1}+I_{2} . \tag{23}
\end{align*}
$$

For I_{1} of (23), by Lemma3.1 we have get

$$
e^{\alpha\left(T_{0}-t\right)}\left\|\phi_{n} u\left(T_{0}\right)\right\|^{2} \leq e^{\alpha\left(T_{0}-t\right)}\left\|u\left(T_{0}\right)\right\|^{2} \leq e^{\alpha\left(T_{0}-t\right)}\left(e^{-\frac{1}{2} \alpha T_{0}} R^{2}+C_{2}\right),
$$

where $C_{2}>0$ dependent of λ, L_{g} and f. If $\varepsilon>0$, there exists $\mathcal{T}=\mathcal{T}\left(\lambda, L_{g}, f, R, \varepsilon\right) \geq T_{0}$ such that for all $t \geq T_{1}$,

$$
e^{\alpha\left(T_{0}-t\right)}\left\|\phi_{n} u\left(T_{0}\right)\right\|^{2} \leq \frac{1}{4} \varepsilon .
$$

For I_{2} of (23), by (22) we obtain

$$
\begin{align*}
& \frac{c_{9}}{n} \int_{T_{0}}^{t} e^{\alpha(s-t)}\left(\left\|u_{t}(s)\right\|_{C_{H}}^{2}+\|u(s)\|^{6}+2\|\nabla u(s)\|^{2}+\|f\|^{2}\right) \\
& \leq \frac{C_{3}}{n}+\frac{C_{3}}{n}\left(e^{\alpha\left(T_{0}+1-t\right)} \int_{T_{0}}^{T_{0}+1}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s+\cdots\right. \\
& \left.\quad+e^{\alpha([t]-t)} \int_{[t]-1}^{[t]}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s+\int_{[t]}^{t}\left\|u_{t}(s)\right\|_{C_{H}}^{2} d s\right) \\
& \leq \frac{C_{3}}{n}+\frac{C_{1} C_{3}}{n}+\frac{C_{1} C_{3}}{n}\left(1-e^{-\alpha}\right)^{-1} \rightarrow 0, n \rightarrow \infty, \tag{24}
\end{align*}
$$

where $C_{3}>0$ dependent of λ, L_{g} and f. Combining (23)-(24) and (21), we have that there exists $N=N\left(\lambda, L_{g}, \varepsilon\right) \geq 1$ such that for all $t \geq T_{1}$ and $n \geq N$,

$$
\int_{\left\{\left(x_{1}, x_{2}\right) \in \mathcal{O}:\left|x_{1}\right| \geq n\right\}}|u(t, x)|^{2} d x \leq\left\|\phi_{n} u(t)\right\|^{2} \leq \varepsilon .
$$

By Lemma 4.3, we derive the asymptotic compactness of the solutions in H.
Lemma 4.4. Let (5) hold, suppose $\left\{u_{0, n}\right\}_{n=1}^{\infty}$ is bounded in H and $t_{n} \rightarrow \infty$, then $\left\{S\left(t_{n}\right) u_{0, n}\right\}_{n=1}^{\infty}$ is precompact in H .

Proof of Lemma 4.4. If $\left\{u_{0, n}\right\}_{n=1}^{\infty}$ is bounded in H, by Lemma 4.3 for every $\varepsilon>0$, there exist $N_{1}=N_{1}(\varepsilon) \geq 1$ and $\mathcal{N}=\mathcal{N}(\varepsilon) \geq 1$ such that for all $n \geq N_{1}$, we have

$$
\left\|S\left(t_{n}\right) u_{0, n}\right\|_{L^{2}\left(\mathcal{O} \backslash \mathcal{O}_{N}\right)}<\frac{\varepsilon}{4} .
$$

By Lemma 3.3 we have that there exists $N_{2}=N_{2}(\varepsilon) \geq N_{1}$ such that $\left\{S\left(t_{n}\right) u_{0, n}\right\}_{n=N_{2}}^{\infty}$ is bounded in V. Since the compactness of the embedding $H^{1}\left(\mathcal{O}_{N}\right) \hookrightarrow L^{2}\left(\mathcal{O}_{N}\right)$ we infer that $\left\{S\left(t_{n}\right) u_{0, n}\right\}_{n=1}^{\infty}$ has a finite cover of radius $\frac{1}{4}$ in $L^{2}\left(\mathcal{O}_{N}\right)$, and by (4.23) show that $\left\{S\left(t_{n}\right) u_{0, n}\right\}_{n=1}^{\infty}$ has a finite cover of radius ε in H

By Lemma 3.3 and 4.4, we prove the existence of global attractors of (1) follows.
Theorem 4.5. Let (5) holds, then system (1) has a unique global attractor in H.

5 Conclusion

We establish the uniform estimates of 2D Navier-Stokes equations of the solutions in H and V to obtain uniform estimates of the solutions. Furthermore, We proved the asymptotic compactness and the existence of global attractors in H by the uniform tail-end estimates. Finally, we proved the existence of the global attractors of delay 2D Naiver-stokes equations on unbounded Channel-like domains.

6 Declarations

Funding
This work is supported by the Innovation Projects of Qinghai Minzu University (No.07M2023010) and the National Science Foundation of China (No.12161071).

Competing Interests

Not applicable.

Ethical Approval

Not applicable.

Authors's Contributions

Conceptualization, Z. Zhang; methodology, Z. Zhang and X. Yao; investigation, Z. Zhang; writing-original draft preparation, Z. Zhang; writing-review and editing, X. Yao.

Availability Data and Materials

Not applicable.

Acknowledgements

Not applicable.

References

[1] Wang B, Uniform tail-ends estimates of the Navier-Stokes equations on unbounded channel-like domains, Proceedings of the American Mathematical Society, 151(2023), no. 11, pp. 4841-4853, DOI org/10.1090/proc/16539.
[2] Caraballo T, Kukaszewioz G, Real J, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, Comptes Rendus Mathematique, 342(2006), no. 4, pp. 263-268. DOI 10.1016/j.crma.2005.12.015.
[3] Temam R, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co. AmsterdamNew York-Oxford, 1977.
[4] Rosa R, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Anal. 32(1998), no. 1, pp. 71-85, DOI 10.1016/S0362-546X(97)00453-7.
[5] Ball, John, Global attractors for damped semilinear wave equations, Discrete and Continuous Dynamical Systems, 2003, DOI 10.3934/DCDS.2004.10.31.
[6] Zdzisaw Brzeniak, Li Y, Asymptotic compactness and absorbing sets for 2 D stochastic Navier-Stokes equations on some unbounded domains, Transactions of the American Mathematical Society, 385(2006), no. 12, pp. 5587-5629, DOI 10.2307/20161558.
[7] Lukaszewicz G, Sadowski W, Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains, Zeitschrift für angewandte Mathematik und Physik ZAMP, 55(2004), no. 2, pp. 247-257, DOI 10.1007/s00033-003-1127-7.
[8] Moise I, Rosa R, Wang X, Attractors for noncompact nonautonomous systems via energy equations, Discrete Contin. Dyn Syst. 10(2004), no. 2, pp. 247-257, DOI 10.3934/dcds.2004.10.473.
[9] Pedro Marín-Rubio, José Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Analysis. 67(2007), no. 10, pp. 2784-2799, DOI 10.1016/j.na.2006.09.035.
[10] Wang B, Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains, Electronic Journal of Differential Equations, 2012(2012), no. 59, DOI 10.1016/j.jmaa.2011.11.022.
[11] Wang B, Attractors for reaction-diffusion equations in unbounded domains, Physica D Nonlinear Phenomena, 128(1999), no. 1, pp. 41-52, DOI 10.1016/S0167-2789(98)00304-2.
[12] Bates P W, Lu K, Wang B, Random attractors for stochastic reaction-diffusion equations on unbounded domains, Journal of Differential Equations, 246(2009), no. 2, pp. 845-869, DOI 10.1016/j.jde.2008.05.017.
[13] Wang X, Lu K, Wang B, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, Journal of Differential Equations, 2017:S0022039617304850, DOI 10.1016/j.jde.2017.09.006.

[^0]: Contact: Zhang Zhang $\boxtimes 1421920008 @ q q . c o m ;$ Xiaobin Yao \boxtimes yaoxiaobin@qhmu.edu.cn
 © 2024 The Author(s). Published by Mersin University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

