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Abstract

This paper studies the global attractors of 2D Navier-Stokes equations with delay defined in unbounded
Channel-like domains. To overcome the non-compactness of solutions, we will use the uniform tail-ends
estimates of the solutions by establishing all the solutions are uniformly small.
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1 Introduction

This paper considers the 2D Navier-Stokes equations defined on O = R × (0, d):
ut − ∆u + (u · ∇)u = g(ut) +∇p + f (x), divu = 0,
u(t, x) = 0, t > 0, x ∈ ∂O,
u(0, x) = u0(x), x ∈ O,
u(x, t) = ϕ(t − τ, x), t ∈ (τ − h, τ), x ∈ O,

(1)

where u and p are the velocity and the pressure of the fluid. f ∈ L2(O) is given, g is a Lipschitz
nonlinear function with delay, r ≥ 0 is constants,

ut(θ) = u(t + θ), ∀ θ ∈ (−r, 0).

When (1) does not contain the delay term, Wang has investigated the existence of the global
attractors of the 2D Navier-Stokes equations on the Channel-like unbounded domains in [1].
In recent years, significant results have been investigated in the study of attractors for 2D
Navier-Stokes with delay. Carabello has studied the attractors of 2D Navier-Stokes equations
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with delay on bounded domains in reference [2], and then proved the existence of pull-back
attractors for non-autonomous delay 2D Navier-Stokes equations on unbounded domains. This
paper mainly studied the asymptotic compactness of the solutions of (1) on unbounded channel-
like domains O. We use the existence, stability, and convergence of the global attractors to show
the long-time asymptotic behavior of the solutions. We have known Sobolev embeddings on
unbounded domains are no longer compact (see reference [3]). In unbounded domains, the
main difficulty is the non-compactness of Sobolev embeddings.

In fact, we can overcome the difficulty by Rosa’s idea of the Ball energy equations proposed
(in reference [4, 5]), which is the method to establish asymptotic compactness of (1) solutions
when O is unbounded in the phase space L2(O, R2) (see references [2, 6, 7, 8, 9, 10]). In order
to overcome the non-compactness of Sobolev embeddings in unbounded domains, we used
uniform tail-ends estimates methods for the solutions proposed in reference [11] to prove the
asymptotic compactness of the solution to the reaction-diffusion equations on Rn(see references
[12, 13]).

In this paper, we will derive the uniform tail-ends estimates of solutions under supposed
conditions p = 0 and divu = 0. We will use uniform tail-ends estimates of the scalar stream
function for the Navier-Stokes equations (see [6, 12]). By uniform estimates of solutions, we
will prove the asymptotic compactness of solutions of (1) defined in O and the existence of
global attractors for (1) in H.

This paper is organized as follows, we will recall some basic concepts and results in Section
2. In Section 3, we will prove the uniform estimates of 2D Navier-Stokes equations of the
solutions in H and V. We will prove the asymptotic compactness of solutions and the existence
of global attractors in H.

In the paper, we denote norm ∥ · ∥ and inner product (·, ·) of the L2(O, R2). We also denote
norm ∥u∥V = ∥∇u∥ for u ∈ V of V and dual space V∗ is labeled as ⟨·, ·⟩ and denote the norm
(·, ·)CH and the inner product ∥ · ∥CH of the CH = (−r, 0; H).

2 Preliminaries

In this section, we review some basic results and knowledge.
The Poincare inequality:

∥∇u∥2 ≥ λ∥u∥2, ∀u ∈ H1
0(O, R2) λ > 0. (2)

Let u, v, w ∈ V, we denoted

b(u, v, w) =
2

∑
i,j=1

∫
O

ui
∂vj

∂xi
wjdx. (3)

For all u, v, w ∈ V,
b(u, v, w) = −b(u, w, v), b(u, v, v) = 0

and
|b(u, v, w)| ≤ ∥u∥L4(O)∥∇v∥∥w∥L4(O) ≤ c∥u∥V∥v∥V∥w∥V , (4)

with every c > 0.
By(3), denote a bilinear operator B : V × V → V∗, for every u, v, w ∈ V,

⟨B(u, v), w⟩ = b(u, v, w),

By (4) for all u, v ∈ V, we have

∥B(u, v)∥V∗ ≤ c∥u∥V∥v∥V ,
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For u ∈ V ∩ H2(O, R2), we also have

∥B(u, u)∥ ≤ c∥u∥ 1
2 ∥∇u∥∥∆u∥ 1

2 .

We suppose
α = λ − Lg.

We will make appropriate suppose for the delay term. Let g : (−r, 0; H) → L2(O, R2) satisfy
the following conditions:

(1) g(0) = 0;
(2) there exists Lg > 0, such that ∀ ξ, η ∈ (−r, 0; H)

|g(ξ)− g(η)| ≤ Lg∥ξ − η∥CH . (5)

3 Uniform estimates of solutions of 2D Navier-Stokes equations

We will prove the uniform estimates of solutions of (1) in H and V.

Lemma 3.1. Let (5) holds, then for every u0 ∈ H, the solution ũ of (1) satisfies for all t ≥ 0,

∥ũ(t)∥2 +
3
2

∫ t

0
e−4L2

g(s−t)∥ũ(s)∥2
Vds ≤ e4L2

gt∥ũ0∥2 + C1,

and for all t ≥ r ≥ 0,

3
2

∫ t

0
e−4L2

g(s−t)∥ũ(s)∥2
Vds ≤ e4L2

gr∥ũ0∥2 + C1(1 + t − r),

where C1 > 0 is a constant independent of t, r or u0.

Proof of Lemma 3.1. Suppose t > 0,

∥∂tũ(t)∥2 + 2∥∇ũ(t)∥2 = 2(g(ũt), ũ(t)) + 2( f , ũ(t)). (6)

Along with (5), we obtain

2(g(ut), ũ(t)) ≤ 2Lg∥ũt∥cH∥ũ∥ ≤ 1
2
∥ũt∥2

CH
+ 2L2

g∥ũ∥2.

and by Young’s inequality, we get

2( f , ũ(t)) ≤ ∥ f ∥2

2L2
g
+ 2L2

g∥ũ∥2. (7)

By (2) and (6)-(7) for t > 0, we have

∥∂tũ(t)∥2 + 2∥∇ũ(t)∥2 ≤ 1
2
∥ũt∥CH + 4L2

g∥ũ∥2 +
∥ f ∥2

L2
g

. (8)

Solve (8) to obtain for all t ≥ 0,

∥ũ(t)∥2 + 2
∫ t

0
e−4L2

g(s−t)∥∇ũ(s)∥2ds ≤ e4L2
gt∥ũ0∥2 + e4L2

gt ∥ f ∥2

2L2
g

. (9)

Integrating (8) on (r,t) with 0 ≤ r ≤ t, by (9) we have

2
∫ t

r
∥∇ũ(s)∥2ds ≤ ∥ũ(r)∥2 +

∥ f ∥2

2L2
g
(t − r) ≤ e4L2

gr∥ũ0∥2 + e4L2
gt ∥ f ∥2

2L2
g
+

∥ f ∥2

2L2
g
(t − r).

This completes the proof.
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We next prove the uniform estimates of solutions of (1) in V for t > 0 with initial data in H.

Lemma 3.2. Let (5) holds, for every u0 ∈ H, the solutions u of (1) satisfies for all t ≥ 1,

∥∇u(t)∥2 +
∫ t+1

t
∥∆u(s)∥2ds +

∫ t+1

t
∥∂tu(s)∥2ds ≤ C2,

where C2 > 0 is a constant dependent of λ, Lg and u0.

Proof of Lemma 3.2. By a limiting process, we will derive the uniform estimates for t ≥ 0,

∥∂t∇u(t)∥2 + 2∥∆u(t)∥2 = 2(B(u(t), u(t)), ∆u(t))− 2(g(ut(t)), ∆u(t))− 2( f , ∆u(t)). (10)

We first estimate the first term of (10)

2(B(u(t), u(t)), ∆u(t)) ≤∥u∥L4(O,R2)∥∇u∥L4(O,R4)∥∆u∥

≤c1∥u∥ 1
2 ∥∇u∥∥∆u∥ 3

2 ≤ 1
2
∥∆u∥2 + c2∥u∥2∥∇u∥4,

where c2 > 0 on O. Combining (5) and Young’s inequality, we have

−2(g(ut(t)), δu(t))− 2( f , ∆u(t)) ≤ 1
4
∥ut∥2

CH
+ 8∥ f ∥2 + 8L2

g∥∇u∥2.

It follows from (10)-(3.9) that for t > 0,

∥∂t∇u(t)∥2 +
3
2
∥∆u(t)∥2 ≤ c2∥u∥2∥∇u∥4 + 8∥ f ∥2 + 8L2

g∥∇u∥2. (11)

By Lemma 3.1 for all t ≥ 0, we obtain

∥u(t)∥2 +
∫ t+1

t
∥u(s)∥2

Vds ≤ c3,

with c3 > 0 depends on λ, Lg, f and u0, we have∫ t+1

t
∥∇u(s)∥2ds ≤ c3,

∫ t+1

t
∥u(s)∥2∥∇u(s)∥2ds ≤ c2

3,

and by Gronwall Lemma, we have
∥∇u(t)∥2 ≤ c4,

where c4 > 0 depends on λ, Lg, f and u0.
Integrating from t to t + 1 for (11), we obtain∫ t+1

t
∥u(s)∥2ds ≤ c5,

with c5 > 0 depends on λ, Lg, f and u0. The proof is complete.

We have proved the following uniform estimates for the large time by Lemma 3.2.

Lemma 3.3. Let R > 0, there exists T0 = T0(R) > 0 such that for all t ≥ T0 and u0 ∈ H with
∥u0∥ ≤ R, the solutions u of (1) satisfies

∥∇u(t)∥2 +
∫ t+1

t
∥∆u(s)∥2ds +

∫ t+1

t
∥∂tu(s)∥2 ≤ C3,

with C3 > 0 is constant dependent of λ, Lg and f .
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4 Uniform tail-end estimates of the solutions

We will the asymptotic compactness of the solutions of (1) by Uniform tail-end estimates of the
solutions. Furthermore, we will obtain the existence of global attractors in H.

Suppose a smooth function ϕ : R → R for 0 ≤ ϕ ≤ 1 and

ϕ(s) = 0, |s| ≤ 1
2

; ϕ(s) = 1, |s| ≤ 1.

If C > 0 and |ϕ′(s)|+ |ϕ′′(s)| ≤ C. Let n ∈ N and x = (x1, x2) ∈ O, let ϕn(x) = ϕ( n1
k ).

We first give the following inequalities.

Lemma 4.1.
(a) Let u ∈ H1(O), then

|∥ϕn∇u∥ − ∥∇(ϕnu)∥| ≤ C4

n
∥u∥.

(b) Let u ∈ H2(O), then

|∥ϕn∆u∥ − ∥∆(ϕnu)∥| ≤ C4

n
∥u∥H1(O).

(c) Let u ∈ H1
0(O), then

∥ϕn∇u∥ ≥ λ
1
2 ∥ϕnu∥ − C4

n
∥u∥.

(d) If u ∈ H2(O) ∩ H1
0(O), then

∥ϕn∆u∥ ≥ λ
1
2 ∥ϕn∇u∥ − C4

n
∥u∥H1(O),

where C4 > 0 is a constant independent of n and u.

Proof of Lemma 4.1.

(a) Note that ∇(ϕnu) = u∇ϕn + ϕn∇u,

|∥ϕn∇u∥ − ∥∇(ϕnu)∥| ≤ ∥ϕn∇u −∇(ϕnu)∥ = ∥u∇ϕn∥ ≤ c
n
∥u∥,

with c > 0 is a constant independent of n and u.
(b) Suppose ∆(ϕnu) = u(∆ϕn) + ϕn(∆u) + 2∇ϕn · ∇u such that

∥ϕn(∆u)− ∆(ϕnu)∥ ≤ ∥u(∆ϕn)∥+ 2∥∇ϕn · ∇u∥ ≤ c
n
(∥u∥+ ∥∇u∥).

(c) If ∥∇(ϕnu)∥ ≥ λ
1
2 ∥ϕnu∥, by (a) we have ∥ϕn∇u∥ ≥ λ

1
2 ∥ϕnu∥ − c

n∥u∥.
(d)

∥∇(ϕnu)∥2 = (∇(ϕnu),∇(ϕnu)) = −(∆(ϕnu), ϕnu)

≤ ∥∆(ϕnu)∥∥ϕnu∥ ≤ λ
1
2 ∥∆(ϕnu)∥∥∇(ϕnu)∥

and ∥∇(ϕnu)∥ ≤ λ− 1
2 ∥∆(ϕnu)∥. By (a) and (b) we have

∥ϕn∇u∥ ≤ ∥∇(ϕnu)∥+ c2

n
∥u∥ ≤ λ− 1

2 ∥∆(ϕnu)∥+ c2

n
∥u∥

≤ λ− 1
2 (∥ϕn∆u∥+ c3

n
∥u∥H1(O)) +

c2

n
∥u∥ ≤ λ− 1

2 ∥ϕn∆u∥+ c4

n
∥u∥H1(O),

which shows that
λ

1
2 ∥ϕn∇u∥ ≤ ∥ϕn∆u∥+ c4

n
λ

1
2 ∥u∥H1(O).

This proof is complete.

https://ejamjournal.com/
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Furthermore, we give a scalar stream function for (1). Let u = (u1, u2) ∈ V and x =
(x1, x2) ∈ Ō, define

û(x) = û(x1, x2) =
∫ (x1,x2)

(0,0)
−u2dx1 + u1dx2.

Since u = 1 on ∂O and div(u) = 0 in O.
Then, we get

∂x1 û = −u2, ∂x2 û = u1, (12)

and
û|∂O = 0, ∇û|∂O = 0.

If T is the curl operator that has

Tu = ∂x2 u1 − ∂x1 u2, ∀u = (u1, u2). (13)

By (12) and (13), we have

∂t∆û = ∆2û + B̂(û, û) + ĝ(ut) + f̂ , (14)

where
ĝ(ut) = T(g(ut)), f̂ = T f , B̂(û, û) = ∂x2((∂x1 û)∆û)− ∂x2((∂x2 û)∆û).

Let n ∈ N, we denote On = (−n, n) × (0, d). By (14), we prove the uniform tail-end
estimates of the solutions of (1) on O \On as below.

Lemma 4.2. Let u0 ∈ H and ε > 0, there exists N = N (λ, Lg, f , u0, ε) ≥ 1 such that the solution u
of (1) satisfies, for all n ≥ N and t ≥ 1,∫

O\Ok

|u(t, x)|2dx ≤ ε.

Proof of Lemma 4.2. We prove the uniform estimates of the solutions by a limiting process. By
(14) we get

− d
dt
(∆û, ϕ2

nû) = −(∆2û, ϕ2
nû)− (B̂(û, û), ϕ2

nû)− (ĝ(ut), ϕ2
nû)− ( f̂ , ϕ2

nû)

= Ji(i = 1, 2, 3). (15)

For the left-hand side of (15) we get

− d
dt
(∆û, ϕ2

nû) =
1
2

d
dt

∫
O

ϕ2
n|∇û|2dx +

∫
O
(∇ût,∇ϕ2

n)ûdx

≥ 1
2

d
dt

∫
O

ϕ2
n|∇û|2dx − c1

n
∥∇ût∥∥û∥,

where c1 > 0 is independent of n. For the J1 of (15) we obtain

J1 = −(∆2û, ϕ2
nû) =−

∫
O

∆û(ϕ2
n∆û + (∆ϕ2

n)û + 2∇ϕ2
n · ∇û)dx

≤− ∥ϕn∆û∥2 +
c2

n2 ∥û∥∥∆û∥+ c2

n
∥∇û∥∥∆û∥. (16)

By Lemma4.1 we suppose exists c3 > 0 independent of k such that

λ
1
2 ∥ϕn∇û∥ ≤ ∥ϕn∆û∥+ c3

n
∥û∥H1(O)
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and hence by Young’s inequality, we have

λ∥ϕn∇û∥2 ≤∥ϕn∆û∥2 +
2c3

n
∥ϕn∆û∥∥û∥H1O +

c2
3

n2 ∥û∥H1O

≤∥ϕn∆û∥2 +
α

4λ − α
∥ϕn∆û∥2 +

(4λ − α)c2
3

αn2 ∥û∥2
H1(O) +

c2
3

n2 ∥û∥2
H1(O)

=
4λ

4λ − α
∥ϕn∆û∥2 +

4λc2
3

αn2 ∥û∥2
H1(O).

we have

−∥ϕn∆û∥2 ≤ (
1
4

α − λ)∥ϕn∇û∥2 +
(4λ − α)c2

3
αn2 ∥û∥2

H1(O),

By (16) and (17) we have

−(∆2û, ϕ2
nû) ≤ (−1

4
α − λ)∥ϕn∇û∥2 +

c4

n
∥∆û∥2,

where c4 > 0 is independent of n.
For the J2 of (15), we obtain

J2 = −(B̂(û, û), ϕ2
nû) = −

∫
O

û(∆û)(∂x2 û)(∂x1 ϕ2
n)dx

≤ c5

n
∥∆û∥∥û∥L4

(
O)∥∂x2 û∥L4(O)

≤ c6

n
∥û∥ 3

2 ∥∇û∥ 3
2 ≤ c7

n
(∥∆û∥2 + ∥∇û∥6),

where c7 > 0 is independent of n.
Suppose g(ut) = (g1(ut), g2(ut)) and f = ( f1, f2). Then for J3 of (15), by (5), (12) we have

−(ĝ(ut), ϕ2
nû)− ( f̂ , ϕ2

nû) =
∫
≀
(−g2(ut), g1(ut)) · ∇(ϕ2

nû)dx +
∫
O
(− f2, f1) · ∇(ϕ2

nû)dx

≤
∫
O

ϕ2
n|∇û|(|g(ut)|CH + | f |)dx +

∫
O
|û|(|g(ut)|+ | f |)|∇ϕ2

n|dx

≤ Lg

∫
O

ϕ2
n|∇û|2CH

dx +
∫
O

ϕ2
n|∇û|| f |dx +

∫
O
|û|(Lg|∇û|+ | f |)|∇ψ2

n|dx

≤ (Lg +
1
4

α)
∫
O

ϕ2
n|∇û|2CH

dx +
1
α

∫
O

ϕ2
n| f |2dx +

c8

n
(∥∇û∥2 + ∥ f ∥2), (17)

where c8 > 0 is independent of n. which along with (15)-(17) we have

d
dt
∥ϕn∇û∥2 + α∥ϕn∇û∥2 ≤ c9

n
(∥∇ût∥2

CH
+ ∥∇û∥6 + ∥∆û∥2 + ∥ f ∥2) + c9∥ϕn f ∥2, (18)

with c9 > 0 is independent of n.
combining (12) and (18), we have

∥∂tϕnu∥2 + α∥ϕnu∥2 ≤ c9

n
(∥ut∥2

CH
+ ∥u∥6 + 2∥∇u∥2 + ∥ f ∥2) + c9∥ϕn f ∥2. (19)

Integrating (19) on (1, t) for t ≥ 1 to have

∥ϕnu(t)∥2 ≤ eα(1−t)∥ϕnu(1)∥2

+
c9

n

∫ t

1
eα(s−t)(∥ut(s)∥2

CH
+ ∥u(s)∥6 + 2∥∇u(s)∥2 + ∥ f ∥2)ds + c9α−1∥ϕn f ∥2.

= Ji(i = 1, 2, 3) (20)

https://ejamjournal.com/
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For the J1 of (20), we have for t ≥ 1,

eα(1−t)∥ϕnu(1)∥2 ≤
∫
{(x1,x2)∈O:|x1|≥ 1

2 n}
|u(1, x)|2dx → 0, n → ∞.

For the J2 of (20), by Lemma3.1 and Lemma3.2 we have for t ≥ 1,

c9

n

∫ t

1
eα(s−t)(∥ut(s)∥2

CH
+ ∥u(s)∥6 + 2∥∇u(s)∥2 + ∥ f ∥2)

≤ c9

n
(c10 + ∥ f ∥)

∫ t

1
eα(s−t)ds +

c9

n

∫ t

1
eα(s−t)∥ut(s)∥2

CH
ds

≤ c9

n
(c10 + ∥ f ∥) + c9

n
(
∫ 2

1
eα(s−t)∥ut(s)∥2

CH
ds + · · ·+

∫ t

[t]
eα(s−t)∥ut(s)∥2

CH
ds)

≤ c9

n
(c10 + ∥ f ∥) + c9

n
(eα(2−t)

∫ 2

1
∥ut(s)∥2

CH
ds + · · ·

+ eα([t]−t)
∫ [t]

[t]−1
∥ut(s)∥2

CH
ds +

∫ t

[t]
∥ut(s)∥2

CH
ds)

≤ c11

n
+

c11

n
(eα(2−t) + · · ·+ eα([t]−t)) ≤ c11

n
+

c11

n
eα([t]−t)Σ∞

j=0r−αj

≤ c11

n
+

c11

n
(1 − e−α)−1 → 0, n → ∞,

with c11 > 0 dependent of λ, Lg, f and u0.
If f ∈ H, for the J3 of (20), we get

c9α−1∥ϕn f ∥2 = c9α−1
∫
{(x1,x2)∈O:|x1|≥ 1

2 n}
| f (x)|2dx → 0, n → ∞. (21)

From (20)-(21) for every ε > 0, then exists N = N(λ, Lg, f , u0, ε) ≥ 1, such that for all t ≥ 1 and
n ≥ N, ∫

{(x1,x2)∈O:|x1|≥n}
|u(t, x)|2dx ≤ ∥ϕnu(t)∥2 ≤ ε.

Next, we will consider the uniform tail-ends estimates of the solutions under bounded
initial data in H.

Lemma 4.3. Let R > 0 and ε > 0, there exists T1 = T1(λ, Lg, f , R, ε) > 0 and N = N(λ, Lg, f , ε) ≥
1, such that if u0 ∈ H with ∥u0∥ ≤ R, then the solution u of (1) satisfies, for all t ≥ T1 and n ≥ N,∫

O\On

|u(t, x)|2dx ≤ ε.

Proof of Lemma 4.3. Let u0 ∈ H with ∥u0∥ ≤ R. By Lemma 3.3, we have that there exists
T0 = T0(R) > 0 such that for all t ≥ T0,

∥∇u(t)∥2 +
∫ t+1

t
∥∂tu(s)∥2ds ≤ C1, (22)

where C1 > 0 dependent of λ, Lg and f .
Integrating (19) on (T0, t) for t ≥ T0, we obtain

∥ϕnu(u)∥2 ≤ eα(T0−t)∥ϕnu(T0)∥2

+
c9

n

∫ t

T0

eα(s−t)(∥ut(s)∥2
CH

+ ∥u(s)∥6 + 2∥∇u(s)∥2 + ∥ f ∥2)ds + c9α−1∥ϕn f ∥2

= I1 + I2. (23)
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For I1 of (23), by Lemma3.1 we have get

eα(T0−t)∥ϕnu(T0)∥2 ≤ eα(T0−t)∥u(T0)∥2 ≤ eα(T0−t)(e−
1
2 αT0 R2 + C2),

where C2 > 0 dependent of λ, Lg and f . If ε > 0, there exists T = T (λ, Lg, f , R, ε) ≥ T0 such
that for all t ≥ T1,

eα(T0−t)∥ϕnu(T0)∥2 ≤ 1
4

ε.

For I2 of (23), by (22) we obtain

c9

n

∫ t

T0

eα(s−t)(∥ut(s)∥2
CH

+ ∥u(s)∥6 + 2∥∇u(s)∥2 + ∥ f ∥2)

≤C3

n
+

C3

n
(eα(T0+1−t)

∫ T0+1

T0

∥ut(s)∥2
CH

ds + · · ·

+ eα([t]−t)
∫ [t]

[t]−1
∥ut(s)∥2

CH
ds +

∫ t

[t]
∥ut(s)∥2

CH
ds)

≤C3

n
+

C1C3

n
+

C1C3

n
(1 − e−α)−1 → 0, n → ∞, (24)

where C3 > 0 dependent of λ, Lg and f . Combining (23)-(24) and (21), we have that there exists
N = N(λ, Lg, ε) ≥ 1 such that for all t ≥ T1 and n ≥ N,∫

{(x1,x2)∈O:|x1|≥n}
|u(t, x)|2dx ≤ ∥ϕnu(t)∥2 ≤ ε.

By Lemma 4.3, we derive the asymptotic compactness of the solutions in H.

Lemma 4.4. Let (5) hold, suppose {u0,n}∞
n=1 is bounded in H and tn → ∞, then {S(tn)u0,n}∞

n=1 is
precompact in H.

Proof of Lemma 4.4. If {u0,n}∞
n=1 is bounded in H, by Lemma 4.3 for every ε > 0, there exist

N1 = N1(ε) ≥ 1 and N = N (ε) ≥ 1 such that for all n ≥ N1, we have

∥S(tn)u0,n∥L2(O\ON) <
ε

4
.

By Lemma 3.3 we have that there exists N2 = N2(ε) ≥ N1 such that {S(tn)u0,n}∞
n=N2

is bounded
in V. Since the compactness of the embedding H1(ON) ↪→ L2(ON) we infer that {S(tn)u0,n}∞

n=1
has a finite cover of radius 1

4 in L2(ON), and by (4.23) show that {S(tn)u0,n}∞
n=1 has a finite

cover of radius ε in H

By Lemma 3.3 and 4.4, we prove the existence of global attractors of (1) follows.

Theorem 4.5. Let (5) holds, then system (1) has a unique global attractor in H.

5 Conclusion

We establish the uniform estimates of 2D Navier-Stokes equations of the solutions in H and V to
obtain uniform estimates of the solutions. Furthermore, We proved the asymptotic compactness
and the existence of global attractors in H by the uniform tail-end estimates. Finally, we
proved the existence of the global attractors of delay 2D Naiver-stokes equations on unbounded
Channel-like domains.

https://ejamjournal.com/
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