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Abstract
The present work considers a wave equation with multiplicative Gaussian white noise and weak dissipa-
tive term on a bounded domain. We first give a theorem including the local existence of mild solutions.
An energy bound and a differential inequality are used to give sufficient conditions that provide the
blow-up of mild local solutions of the stochastic wave equation. The paper’s main contribution comes
from handling a multiplicative noise and a general source term contrary to the articles that exist in the
literature.
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1 Introduction

The wave equation is an essential partial differential equation that appears in several fields,
such as electromagnetic, traffic flows, acoustics, fluid dynamics, general relativity, atmosphere
and ocean dynamics, chemical reactions, and biological sciences. The widespread use of wave
equations led many mathematicians to study different aspects of the equation, such as the
existence and uniqueness, decay, and explosion of the solutions [1, 2, 3, 4].

To include the fluctuating properties of the media in the model, a noise term must be added
to the wave equation. Such inclusions led to stochastic wave equations in the 1960’s. They have
become a very important tool in the past few decades for phenomena experiencing random
changes. Inspired by these facts we devoted this paper to the following wave equation that
models a variety of physical situations with a multiplicative Gaussian noise:

dut + [µut + αu − ∆u] dt = φ (u) dt + h (u, ut,∇u, x, t) dW (x, t) , (t, x) ∈ (0, T)× Ω (1)
u (x, 0) = u0, ut (x, 0) = v0, x ∈ Ω, (2)

u = 0, (t, x) ∈ (0, T)× ∂Ω. (3)
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Here α, µ > 0, ut is a weak dissipative (damping) term, φ(u) is a nonlinear source term,
and W (x, t), the properties of which will be determined later, is a Wiener process. The weak
dissipative term µut, with µ > 0 stands for the dynamical friction ([5]). The h = 0 state in Eq.
(1) corresponds to the deterministic wave equation and has been considered in a vast number
of articles [6, 7, 8, 9, 10, 11]. The simplest form of the deterministic wave equation with Cauchy
data, on which there are many studies, is the equation given below:{

vtt − ∆v = f (v), x ∈ Rn, t > 0,
v (x, 0) = ϕ(x), vt (x, 0) = ψ(x), x ∈ Rn.

The critical exponent p* = p*(n) given by{
p∗(n) := n+1+(n2+10n−7)1/2

2(n−1) for n ≥ 2,

p*(1) := ∞

determines the threshold between the existence of a global weak solution with small data and
the blow-up of a local weak solution with small data for a power nonlinearity f (v) = |v|p [12].
The stochastic wave equation has received extensive attention from a mathematical viewpoint
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. For the motivation of our paper, let us examine these studies
in detail. Chow [13] studied the nonlinear stochastic wave equation on a bounded domain
Ω ⊂ Rd

vtt = c2∆v − αv + g(v) + h(v, Dv, x, t)∂tW (x, t) , (4)

where d ≤ 3, D = ∂x is the gradient operator, c, α > 0 are parameters, g(s) and h(s, q, x, t) are
nonlinear functions growing polynomially, and locally Lipschitz continuous. By imposing some
conditions on f and h, and an energy bound, Chow proved that solutions of Eq. (4) blow-up in
the mean-square sense in finite time. The restriction d ≤ 3 on dimension is made in order to
work with polynomial nonlinear terms. Local and global existence of solutions in some Sobolev
spaces with α = 0 and nonlinear terms of polynomial degree by a truncation technique was
studied in [23]. In [14], Chow investigated the semilinear stochastic wave equation

∂2
t v = [A(x, D)− 2α∂t]v + f (v, Dv, x, t) + h(v, Dv, x, t)∂tW (x, t) , (5)

with initial boundary conditions. Here A is a strongly elliptic operator. The existence of
solutions for finite and infinite time intervals and the asymptotic behavior of solutions are
discussed in [14]. An invariant measure’s existence was proved in Brzezniak et. al. [20] for
damped wave equation

utt = ∆u − m2u − au|u|p−1 − βut + F + ηg(u)Ẇ

on Rd, where m, β ≥ 0, a > 0, F ∈ L2, η ∈ L∞ and W is a Wiener process of cylindrical type. In
[21], the authors deal with explosive solutions of stochastic damped wave equation

utt + Aut − ∆u = γ |u|p u + g(u, ut, Du)∂tW (x, t) (6)

on Rd. Weak and strong damped cases are discussed separately. Using a truncation technique,
they approximated mild solutions of (6) by a sequence of strong solutions in infinite dimension
so that they were able to apply the Ito rule. Afterward, they proved that the solutions of the
Cauchy problem of (6) cease to exist in finite time in L2 sense.

Barbu and Da Prato [17] studied the stochastic wave equation with dissipative terms in the
form below

dVt + (AV + Vt + g(V))dt =
√

QdW(t)
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on a bounded domain of Rn, for n ≤ 3, where A = −∆, W is a cylindrical Wiener process and
Q is a nonnegative symmetric operator. The invariant measure’s existence was proved by the
Krylov–Bogolyubov procedure.

In [15], the author investigated a semilinear damped wave equation with initial conditions
and random noise

utt + 2γut + βu − ∆u = f (t, x, u) +
∞

∑
j=1

σj (t, x, u)
dBj (t)

dt
(7)

where β, γ > 0 are constants, x ∈ R3 and Bj s are standard Brownian motions. The author first
proved the existence of a pathwise unique solution, and then give the existence of periodic and
invariant measures for the Cauchy problem of (7). They also demonstrated how their method
can be applied to an initial boundary value problem. In the present paper, the solution’s blow-
up for problem (1)-(3) is investigated. Blow-up is a type of singularity that can be explained
by the fact that the solution becomes infinite in a finite time. In a general sense, the global
existence for the above equation occurs in situations where the damping term (ut) dominates
the source term ( f (u)), while blow-up happens in the opposite case and when the initial data is
large enough. In all the above-mentioned papers, either the problem is studied for a particular
case of source term f (u) or the problem is handled from a different aspect.

The paper is designed in the following way: In the second section, we first give the properties
of Wiener process, and then give a local existence theorem. The last section includes the main
result and its proof.
We will complete this section by giving some notations on spaces. Lp (Ω) is the space of all
measurable functions u on Ω. Its norm is denoted by ∥.∥Lp . For p = 2, the norm and the inner
product is given by (·, ·), and ∥.∥, respectively. Wm,p (Ω) , is the space of Sobolev. Its norm and
inner product is denoted by ∥u∥Wm,p(Ω), and (u, v)m, m = 1, 2, 3, ... respectively. If p = 2, we
denote the space Wm,2 (Ω) by Hm (Ω). H stands for H0 = L2. We demonstrate the norm of
Sobolev space H1

0 with ∥u∥H1
0
. We also introduce the space H := H1

0 × H accompanied with the
following norm

∥ϕ∥H =
{
∥u∥2

1 + ∥v∥2
}1/2

for any ϕ = (u, v) ∈ H.

2 Preliminaries

Let us define the complete probability space (Ω,F , P) with a filtration {Ft, t ≥ 0}. Consider an
H− valued Wiener process W (x, t) , x ∈ Ω, t ≥ 0 having covariance operator Q on (Ω,F , P).
Q is of trace class and TrQ < ∞. One way of defining Q by means of eigenvalues {λk} and
eigenfunctions {ek} is

Qek = λkek. (8)

Here eigenvalues {λk} are bounded and nonnegative, and eigenfunctions {ek} form a complete
orthonormal base in H. So, W (x, t) has the following expansion

W (x, t) =
∞

∑
i=1

√
λkBk (t) ek,

where {Bk (t)} denotes a real valued sequence of independent Brownian motions. The above
series is convergent in L2 [24].
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Problem (1)- (3) can be converted to a system as
du = vdt,
dv = ((−αI + ∆) u − µv + φ(u))dt + h(u, v,∇u)dW (x, t) ,
u(x, 0) = u0 (x) , ut(x, 0) = u1 (x) ,
u(x, t) = 0.

Without loss of generality, we may take the positive constants µ and α as µ = α = 1. Then
problem (1)- (3) can be reduced to{

dY(t) = ΛY(t)dt + Ψ(Y(t))dt + Σ(Y(t))dW(t),
Y(0) = Y0 = (u0, u1)

T ,
(9)

where

Y (t) =
(

u (t)
v (t)

)
, Λ =

(
0 I

−I + ∆ 0

)
,

Ψ (Y (t)) =
(

0
−v + φ (u (t))

)
, Σ (Y (t)) =

(
0

h(u, v,∇u)

)
Remark 2.1. A predictable, Ft adapted H− valued process Y (t) , t ∈ [0, T] satisfying the
following equation

Y(t) = etΛY(0) +
t∫

0

e(t−s)ΛΨ(Y(s))ds +
t∫

0

e(t−s)ΛΣ(Y(s)dW(s)).

is said to be a mild solution to (9).

We indicate that Λ is an analytic semigroup’s (
{

etΛ, t ≥ 0
}

) infinitesimal generator on H.
Throughout the paper, the following hypotheses are imposed on φ and h:

L1. For u1, u2 ∈ H1
0 and there exist C1, C2 > 0 such that the nonlinear term satisfies

φ (u) ≤ C1
(
1 + |u|p u

)
∣∣∣φ (

u1
)
− φ

(
u2)∣∣∣ ≤ C2

(
1 +

∣∣∣u1
∣∣∣p
+

∣∣u2∣∣p
) ∣∣∣u1 − u2

∣∣∣
.

L2. Assume that h(·) : [0, T] → L(H) isa continuous map for any h : Rd+2 → R. For any
u1, v1, u2, v2 ∈ H and ∇u1,∇u2 ∈ H1

0 , there exist C3, C4 > 0 such that

|h (u, v,∇u)|2 ≤ C3

(
1 + |u|2(p+1) + |v|2 + |∇u|2

)
,

and ∣∣∣h (
u1, v1,∇u1

)
− h

(
u2, v2,∇u2)∣∣∣2 ≤ C4

[
(1+

∣∣∣u1
∣∣∣2p

+
∣∣u2∣∣2p

)
∣∣∣u1 − u2

∣∣∣2
+

∣∣∣v1 − v2
∣∣∣2 + ∣∣∣∇u1 −∇u2

∣∣∣2 ].

L3. The Wiener process W with covariance operator R satisfying TrQ < ∞ takes values from
H.

https://ejamjournal.com/


Stochastic Damped Wave Equation Hatice Taskesen and Beytullah Yağız | 5

Here p satisfy

p ∈ (0, ∞) if d = 1, 2, and 0 < p + 1 ≤ d + 2
d − 2

otherwise. (10)

The following consequence of the continuously compact embedding of H1
0 (Ω) into Lp (Ω)

is necessary for local existence.

Lemma 2.2. [25] Let u, v ∈ H and p satisfy (10). Then there is a positive constant C0 such that

∥u∥(p+1) ≤ C0 ∥∇u∥H1
0

, ∀u ∈ H1
0

∥upv∥ ≤ Cp+1
0 ∥∇u∥p ∥∇v∥ , ∀u, v ∈ H1

0 .

The following theorem is related to the local existence of solutions of problem (9) or equiva-
lently problem (1)-(3).

Theorem 2.3. Assume that conditions L1-L3 hold, u0 ∈ H1
0 and u1 ∈ H. Then problem (9) possesses a

unique local mild solution (u, v) satisfying u ∈ C([0, ς], H1
0), v ∈ C([0, ς], H) and

lim
t→ς

sup ∥∇u∥ = +∞.

and

Y(t ∧ τN) = e(t∧τN)ΛY(0) +
t∧τN∫
0

e(t∧τN−s)ΛΨ(Y(s))ds +
t∧τN∫
0

e(t∧τN−s)ΛΣ(Y(s)dW(s)), (11)

where the stopping time ς is described by

ς = lim
N→∞

τN , τN = inf {t ≥ 0; ∥∇u∥ ≥ N}

for any natural integer N.

Proof. The proof of the theorem is carried out via a truncation method as in [21], where the
damped wave equation is studied with the source term φ (u) = µ |u|p u. We will sketch the
outlines here for the motivation of the paper. For N > 0, let ηN(·) : R+ = [0, ∞) → R+ be a
function in C1 such that ηN(s) = 1 for |s| ≤ N, ηN(s) ∈ (0, 1) for N < |s| < N + 1, and ηN(s) =
0 for |s| ≥ N + 1. Furthermore, ∥η′

N∥∞ ≤ 2. Let us define φN (u (t)) = ηN(∥u∥H1
0
)φ(u) and

hN(u,∇u, x, t) = ηN(∥u∥H1
0
)h(u,∇u, x, t). Then system (9) turns into the following truncated

system

dYN(t) = ΛYN(t)dt + ΨN(YN(t))dt + ΣN(YN(t))dW(t),
Y(0) = Y0,

(12)

where YN = (uN (t) , vN (t)) , ΨN(Y) =

(
0

−v + φN (u (t))

)
, [ΣN(Y)] (x) = hN(u,∇u, x, t) (x) .

Then from Lemma 2.2 and Hölder inequality, we get∥∥∥φN(u1)− φN(u2)
∥∥∥2

≤ C5 (N, p)
∥∥∥∇u1 −∇u2

∥∥∥2
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which yields

∥∥ΨN(Y)− ΨN(Y ′)
∥∥2 ≤

∥∥∥φN(u1)− φN(u2) + v1 − v2
∥∥∥2

≤
∥∥∥φN(u1)− φN(u2)

∥∥∥2
+

∥∥∥v1 − v2
∥∥∥2

≤ C6(N, p)
∥∥∇Y −∇Y ′∥∥2 ,

where Y =
(
u1, v1)T, Y ′ =

(
u2, v2)T. Moreover,

∥ΨN(u)∥2 = ∥φN(u)− v∥2

≤ C7(N, p)
(
1 + |∇Y|p

)
|∇Y| .

Similarly,
Tr[hN(u)Qh∗N(u)] ≤ c8(N, p)(1 + ∥∇Y∥2),

and
Tr

[(
hN(u1)− hN(u2)

)
Q
(

hN(u1)− hN(u2)
)∗]

≤ C9(N, p)
∥∥∇Y −∇Y ′∥∥2

The above computations show that for any N > 0, Lipschitz continuity and linear growth
conditions are also fulfilled by φN and hN on bounded sets in H. By applying the existence
theorem given in [24] (see Theorem 7.2) we deduce that there exists a unique mild solution
YN = (uN (t) , vN (t)) ∈ H to the truncated system (12). For each N > 0, let us define a stopping
time

τN = inf {t ≥ 0; ∥∇u∥ ≥ N} ,

then by the uniqueness of the solution of (12), for M > N, YM (t) = YN (t) on [0, τN ]. Thus we
can describe a local solution by Y (t) = YN (t) to (12) on t ∈ [0, τN ∧ T]. Let ς = lim

N→∞
τN , then

by the continuity of t → Y (t) , Y (t) is the unique continuous solution with a finite lifespan ς
and fulfilling (11).

In the next section, we provide conditions for blow-up of solutions that rely on energy
identity ϑ(t) : H → R related to (1)

ϑ(t) =
1
2
∥v∥2 +

1
2
∥u∥2

H0
1
−

∫
Ω

φ(u)dx, (13)

where t ≥ 0. We utilize the following lemmas including differential inequalities to show the
blow-up of solutions.

Lemma 2.4. [26] Suppose that η > 0 and K(t) > 0 is a C2 function satisfying the following differential
inequality

K′′ − 4(η + 1)K′ + 4(η + 1)K ≥ 0. (14)

If the following condition is satisfied

K′(0) > p1K(0) + M0,

then for t > 0, K′(t) > 0, where M0 is a constant and p1 = 2(η + 1)1/2[(η + 1)1/2 − (η)1/2] denotes
the smallest root of

p2 − 4(η + 1)p + 4(η + 1) = 0.

https://ejamjournal.com/
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Lemma 2.5. [26] If G(t) is a function that is nonincreasing for 0 ≤ t1 < ∞ and fulfills the following
inequality

G′(t)2 ≥ A0 + A1 G(t)2+ 1
γ , t ≥ t1,

then for a finite time T0, the following equality is satisfied

lim
t→T−

0

G(t) = 0,

where A0 > 0, A1 ∈ R. Furthermore, the upper bound of T0 is predicted as

• (i) If A1 > 0, then

T0 ≤ t1 + 2(3α+1)/2α αA3

A1/2
0

{
1 − (1 + A3G (t1))

−1/2α
}

,

or
T0 ≤ t1 +

A1 (t1)√
A0

,

where A3 =
(

A1
A2

)2+1/α
.

• (ii) If A1 = 0, then T0 ≤ t1 +
G(t1)√

A0
,

• (iii) If A1 < 0 and G (t1) < min{1,
√

A0/ − A1}, then

T0 ≤ t1 +
1√
−A1

ln
√

A0/ − A1√
A0/ − A1 − G (t1)

.

3 Blow-up of solutions

In this section, we are interested in a type of singularity for Problem (1)-(3) or (12), the blow-up
of solutions.

For this purpose, we utilize the following auxiliary functional for t ≥ 0

Y(t) = E
∫ t

0
∥u∥2dτ + E∥u∥2. (15)

Direct computations yield
Y′(t) = E(u, u) + 2E(u, v),

and
Y′′ (t) = 2E∥v∥2 − 2E∥∇u∥2 − 2E∥u∥2 + 2E(u, φ(u)), (16)

where (16) is obtained by multiplying (1) by u and then taking expectations in both sides of the
arising equation.

Remark 3.1. Hereafter, we assume that h satisfies the condition

|h(s, r,∇s, x,t)| ≤ 2γ

(2γ + 1)c2
∗TrQ

|r|2 , (17)

instead of L2, where γ > 0 is a constant. The nonlinear term φ satisfies an Ambrosetti-
Rabinowitz type condition

sφ(s) ≥ (2 + 4γ)Θ(s) (18)

where Θ (u) =
∫ u

0 φ (s) ds.
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Now, we provide an energy inequality that has a decisive role in the behavior of the solution
to our problem.

Lemma 3.2. Suppose that (u, v) is a mild solution in H under the conditions of Theorem 2.3. Then the
inequality

E↓ (t) ≤ E↓ (0)− E
∫ t

0
∥v∥2 ds +

1
2

c2
∗TrQ

∫ t

0

∫
Ω

h2dxds (19)

and equality

E (u, v) = E (u0, v0) + E
∫ t

0
(v, v)ds − E

∫ t

0
∥u∥2

H1
0

ds − 1
2

E ∥u∥2
H1

0

+
1
2

E ∥u0∥2
H1

0
+ E

∫ t

0
(u, φ) ds (20)

are satisfied.

Proof. An application of Ito formula to ∥v∥2 yields

∥v∥2 = ∥v0∥2 + 2
∫ t

0
(v, dv) +

∫ t

0
(dv, dv)

= ∥v0∥2 − 2
∫ t

0
(∇u,∇v) ds − 2

∫ t

0
∥v∥2 ds − 2

∫ t

0
(u, v) ds

+ 2
∫ t

0
(v, φ) ds + 2

∫ t

0
(v, hdW) +

∞

∑
k=1

∫ t

0
(hQek, hek) ds. (21)

A direct computation yields

2
∫ t

0
(u, v) ds = ∥u∥2 − ∥u0∥2 , (22)

2
∫ t

0
(∇u,∇v) ds = ∥∇u∥2 − ∥∇u0∥2 (23)

and

2
∫ t

0
(v, φ) ds = 2

∫
Ω
(Θ (u)− Θ (u0)) dx. (24)

By substituting (22)-(24) and (8) in (21), we obtain

∥v∥2 = 2ϑ (0)− ∥∇u∥2 − 2
∫ t

0
∥v∥2 ds − ∥u∥2 + 2

∫
Ω

Θ (u) dx

+ 2
∫ t

0
(v, hdW) +

∞

∑
k=1

λk

∫ t

0

∫
Ω

h2e2
k (x) dxds. (25)

Defining c∗ := sup
k≥1

∥ek∥∞ < ∞, taking into account TrQ = ∑∞
k=1 λk and taking expecta-

tion in (25), we get (19). Now we will prove (20). Considering global mild solution (u, v)
for problem (9), for each k ≥ 1, and an orthonormal base {ẽk}k≥1 of L2, {(u (t) , ẽk) ; t ≥ 0}
and {(v (t) , ẽk) ; t ≥ 0} are a continuous process with finite variation and a continuous semi-
martingale, respectively and both are {Ft}t≥0 adapted. Via the Ito formula, we get

(u (t) , ẽk) (v (t) , ẽk) = (u0, ẽk) (v0, ẽk) +
∫ t

0
(u (t) , ẽk) d (v (t) , ẽk) +

∫ t

0
(v (t) , ẽk) d (u (t) , ẽk) .

https://ejamjournal.com/
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From the above equation, we have

(u, v) = (u0, v0) +
∫ t

0
(u, dv) +

∫ t

0
(v, du)

= (u0, v0)−
1
2
∥u∥2

H1
0
+

1
2
∥u0∥2

H1
0
−

∫ t

0
∥u∥2 ds −

∫ t

0
∥∇u∥2 ds

+
∫ t

0
∥v∥2 ds +

∫ t

0
(u, φ) ds +

∫ t

0
(u, hdW) . (26)

Taking the expectation in (26) gives the desired equality.

Before proving the blow-up theorem we introduce the following functional

L =
(

Y(t) + (T∗ − t) E ∥u0∥2
)−γ

. (27)

Simple computations yield

L′ = −γL−γ−1(t)
[
Y′(t)− E ∥u0∥2

]
= −γL1+1/γ(t)

[
Y′(t)− E ∥u0∥2

]
(28)

and

L′′ = γL1+2/γ(t)
{
(γ + 1)

(
Y′(t)− E ∥u0∥2

)2
−

[
Y(t) + (T∗ − t) E ∥u0∥2

]
Y′′(t)

}
. (29)

Using Hölder inequality and equality (22), we obtain

Y′(t)− E ∥u0∥2 = E (u, v) + E
∫ t

0
(u, v) ds

≤
(
E∥u∥2E∥v∥2)1/2

+

(
E
∫ t

0
∥u∥2dτE

∫ t

0
∥v∥2dτ

)1/2

. (30)

Then by (16) and (18), we have

Y
′′
(t) ≥ 2(2 + 4γ)E

∫
Ω

Θ(u)dx + 2E(v, v)− 2E∥u∥2
H1

0
(31)

Inserting (17) in (19) gives

Eϑ(t) ≤ Eϑ(0)− γ + 1
2γ + 1

∫ t

0
∥v∥2dτ. (32)

Employing (19) and (32) in (31) yields

Y
′′
(t) ≥ −(8γ + 4)Eϑ(0) + 4(γ + 1)E

∫ t

0
∥v∥2 ds + 4(γ + 1)E(v, v). (33)

Depending on the initial energy’s (Eϑ(0)) sign, three different cases arise.

(i) If Eϑ(0) < 0, inequality (33) yields

Y
′′
(t) ≥ −(8γ + 4)Eϑ(0). (34)

Integration of the above inequality from 0 to t gives

Y′(t) ≥ Y′(0)− (8γ + 4)Eϑ(0)t , t ≥ 0.

Hence, for t ≥ t1 we get Y′(t) > E∥u0∥2, where

t1 = max
{

0,
Y′(0)− E∥u0∥2

(8γ + 4)Eϑ(0)

}
. (35)
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(ii) If Eϑ(0) = 0, then Y′′(t) ≥ 0 for t ≥ 0. Thus, if E∥u0∥2 < Y′(0), then for t ≥ 0, we get
Y′(t) > E∥u0∥2.

(iii) If Eϑ(0) > 0, then with the aid of (22) and the Young inequality, we obtain

E∥u0∥2 + E
∫ t

0
∥u∥2dτ + E

∫ t

0
∥v∥2dτ ≥ E∥u∥2

which yields

Y(t) + E
∫ t

0
∥v∥2dτ + E∥u0∥2 + E∥v∥2 ≥ E∥u∥2. (36)

If this inequality is combined with (33), then one can see that the functional Y(t) satisfies (14),
i.e.

Y′′(t)− 4(γ + 1)Y′(t) + 4(γ + 1)Y(t) + M ≥ 0, (37)

where
M = (8γ + 4)Eϑ(0) + 4(γ + 1)E∥u0∥2. (38)

Let us define
K(t) = Y(t) +

1
4(γ + 1)

M

for t > 0. Then K(t) satisfies the differential inequality (14). Moreover, Lemma 2.4 implies that
under the condition K′(0) > r2K(0) + M0, we have Y′ > 0 for t > 0.
As a consequence of the above computations, the following lemma can be written.

Lemma 3.3. Assume that φ is local Lipschitz, and φ, h satisfies conditions (18) and (17), respectively.
Moreover, suppose either of the following conditions holds

(1) Eϑ(0) < 0
(2) Eϑ(0) = 0 and Y′(0) > E∥u0∥2

(3) Eϑ(0) > 0 and

Y′(0) > r2

(
Y(0) +

M
4(γ + 1)

)
+ E∥u0∥2. (39)

Then Y′(t) > E∥u0∥2 for t ≥ t0, where t0 = t1 is given explicitly in the proof for case (1), and for
cases (2) and (3) t0 = 0.

Theorem 3.4. Suppose that conditions L1, L3, (17) and one of the following conditions are met

(i) Eϑ(0) < 0
(ii) Eϑ(0) = 0 and Y′(0) > E∥u0∥2

(iii) (E(u0,v0))
2

2(T∗+1)E∥u0∥2 > Eϑ(0) > 0 and

Y′(0) > r2

(
Y(0) +

M
4(γ + 1)

)
+ E∥u0∥2. (40)

Then
limt→T−

0

(
E
∫ t

0
∥u∥2dτ + E∥u∥2 (t)

)
= +∞. (41)

Proof. We try to obtain an estimate for L. Rearranging (29) yield

L′′ = −γL1+2/γ(t)Ξ(t), (42)

where
Ξ(t) =

[
Y(t) + (T∗ − t) E ∥u0∥2

]
Y′′(t)− (γ + 1)

(
Y′(t)− E ∥u0∥2

)2
. (43)

https://ejamjournal.com/
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Making use of the estimates (30) and (33) in the above equation, we obtain

Ξ(t) ≥
(
−(4 + 8γ)Eϑ(0) + 4(γ + 1)

(
E∥v∥2 + E

∫ t

0
∥v∥2dτ

))
(Y(t) + (T∗ − t)E∥u0∥2)

− 4(1 + γ)Y(t)
(

E∥v∥2 + E
∫ t

0
∥v∥2dτ

)
≥ −(4 + 8γ)Eϑ(0)(Y(t) + (T∗ − t)E∥u0∥2) (44)

Using (44) in (42), the following inequality is obtained

L′′(t) ≤ γ(4 + 8γ)Eϑ(0)L1+ 1
γ (t) , t ≥ t0. (45)

Since L′(t) < 0 for t > t0 due to Lemma 3.3, the following inequality is obtained by
multiplying (45) by L′(t) and integrating from t0 to t :

L′(t)2 ≥ A0 + A1L2+ 1
γ (t), t ≥ t0,

where

A0 = γ2L2+ 2
γ (t0)((Y′(t0)− E∥u0∥2)2 − 8Eϑ(0)L

−1
γ (t0)) , A1 = 8γ2Eϑ(0).

A0 > 0 iff

Eϑ(0) <
(Y′(t0)− E∥u0∥2)2

8(Y(t0) + (T∗ − t0)E∥u0∥2)
.

Lemma 2.5 implies that limt→T0 L(t) = 0 in a finite time T0, and hence, the upper bound of
blow-up time T0 is estimated with respect to the sign of Eϑ(0). In case (i),

T0 ≤ t0 −
L(t0)

L′(t0)
. (46)

Moreover, if L(t0) <
{

1,
√

A0/ − A1
}

then

T0 ≤ t0 +
1√
−A1

ln
√

A0/ − A1√
A0/ − A1 −L(t0)

,

where t0 = t1 was given in (35). In case (ii),

T0 ≤ − L(0)
L′(0)

or

T0 ≤ L(0)√
A0

.

For the third case,

T0 ≤ L(0)√
A0

or
T0 ≤ 2

3γ+1
2γ

γP√
A0

(1 − (1 + PL(0))
−1
2γ ).

Here P = (A0/A1)
2+ 1

γ . For T∗, we may select T∗ ≥ T0 as any positive constant for the three
cases. We conclude from the above that

lim
t→T0

Y (t) = +∞.
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Remark 3.5. Damping terms play an important role in evolution equations. If there is not a
damping term in Eq. (1), the condition that continuity of the function h in x and t, and locally
Lipschitz continuity in u and ∇u is sufficient. But, in the presence of damping terms, the
interaction between the source term and the damping term determines the behavior of the
problem. For the blow-up of the solutions of the problem investigated here, the conditions (17)
and (18) were imposed on h, which means that the source term dominates the damping term.
Conversely, the dominance of the damping term over the source term ensures global in time
solutions. For stochastic wave equations, a large noise may prevent the blow-up of solutions in
finite time, however, a small noise is not enough to prevent blow-up phenomena.

The initial boundary value problem of Eq. (1) in the absence of a stochastic term was
previously studied by Xu [7].
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