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Abstract

The main motivation of the paper is to provide new integral inequalities for different kinds of convex
functions by using a fractional integral operator with a non-singular kernel. The findings involve
several new integral inequalities for quasi-convex functions and (h, m)−convex functions. We have
used the algebraic properties of Caputo-Fabrizio fractional operator, definitions of convex functions, and
elementary analysis methods for the proof steps.
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1 Introduction

The concept of convexity, which has an important place in inequality theory, has been used by
many researchers and has been used extensively, especially in the field of inequality theory.
Convex functions are fundamental concept in mathematical analysis with applications in
optimization, economics, engineering, and various other fields. A real-valued function f :
Rn → R is considered convex if, roughly speaking, the line segment between any two points
on the graph of the function lie above the graph itself. The formal definition can be given as
follows.

Definition 1.1 (See [1]). Let I be on interval in R. Then Ξ : I → R is said to be convex, if

Ξ (ζρ + (1 − ζ) ϱ) ≤ ζΞ (ρ) + (1 − ζ)Ξ (ϱ)
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holds for all ρ, ϱ ∈ I and ζ ∈ [0, 1] .

We remind that the notion of h−convex functions as follows.

Definition 1.2. (See [2]) Let h : J ⊆ R → R be a positive function. We say that Ξ : I ⊆ R → R

is a h−convex function, or that Ξ belongs to the class SX(h, I), if Ξ is non-negative and for all
ρ, ϱ ∈ I, and ζ ∈ (0, 1), we have

Ξ (ζρ + (1 − ζ) ϱ) ≤ h (ζ)Ξ (ρ) + h (1 − ζ)Ξ (ϱ) . (1)

If the inequality (1) is reversed, then Ξ is said to be h−concave function.

We recall that the notion of (h, m)−convex functions is the following.

Definition 1.3. (See [3]) Let h : J ⊆ R → R be a non-negative function. We say that Ξ : [0, ς] →
R is a (h − m)−convex function, if Ξ is non-negative and for all ρ, ϱ ∈ [0, ς], m ∈ [0, 1] and
β ∈ (0, 1), we have

Ξ (βρ + m (1 − β) ϱ) ≤ h (β)Ξ (ρ) + mh (1 − β)Ξ (ϱ) . (2)

If the inequality (2) is reversed, then Ξ is said to be (h − m)-concave function on [0, ς]

We will proceed with the definition of quasi-convex functions as follows.

Definition 1.4. (See [4]) A function Ξ : [σ, ς] → R is said to be quasi-convex on [σ, ς] if

Ξ(ζρ + (1 − ζ)ϱ) ≤ max {Ξ(ρ), Ξ(ϱ)} , for all ρ, ϱ ∈ [σ, ς] .

The relationship between the concepts of convexity and quasi-convexity can be found in the
papers [5–9].

In [10], Iscan defined quasi-geometrically convex functions as the following:

Definition 1.5. A mapping Ξ : I ⊂ (0, ∞) → R is called as quasi-geometrically convex on I, if

Ξ
(

ρ1−ζϱζ
)
≤ sup {Ξ (ρ) , Ξ (ϱ)} ,

for any ρ, ϱ ∈ I and ζ ∈ [0, 1] .

Iscan also gave an example of quasi-geometrically convex functions in [10]:

Example 1. The function Ξ : (0, 4] → R,

Ξ(ϖ) =


1, ϖ ∈ (0, 1]

(ϖ − 2)2, ϖ ∈ [1, 4]

is neither GA−convex nor geometrically convex on (0, 4], but it is a quasi-geometrically convex
function.

Inequality theory, broadly speaking, encompasses the study of mathematical inequalities
and their properties. Inequalities are expressions that describe a relationship between two
mathematical objects, typically numbers, vectors, functions, or operators. Inequality theory is a
fundamental and pervasive part of mathematics with applications in various branches. Inequal-
ity theory is pervasive in various branches of mathematics, including analysis, algebra, number
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theory, optimization, probability, and functional analysis. It is fundamental in establishing
bounds, proving the convergence of series, and optimizing functions subject to constraints.

In summary, inequality theory is a rich and versatile area of mathematics, providing tools
and techniques for reasoning about relationships between numbers, functions, and mathemati-
cal objects across different mathematical disciplines.

Fractional integral operators are mathematical operators that generalize the concept of
integration to non-integer orders. They are fundamental in the field of fractional calculus and
have applications in various scientific and engineering disciplines. The two most common
types of fractional integral operators are the Riemann-Liouville fractional integral and the
Caputo fractional integral. Fractional integrals capture non-local effects, considering the entire
history of the function up to the order of integration. The fractional integral operators exhibit
a semigroup property, meaning that the composition of two fractional integrals of different
orders is equivalent to a fractional integral of another order and also they serve as an inverse
operation to fractional derivatives. Applying a fractional derivative followed by a fractional
integral (or vice versa) may yield the original function, depending on the order of integration
and differentiation. In conclusion, fractional integral operators are powerful tools for modeling
and analyzing systems with memory effects and non-local behaviors. Their applications span
various scientific and engineering domains where traditional integer-order calculus may fall
short in capturing the complexity of the underlying processes.

Definition 1.6. (See [11–13]) Let Ξ ∈ H1 (σ, ς) , σ < ς, β ∈ [0, 1], then the definition of the left
fractional derivative in the sense of Caputo and Fabrizio becomes(

CFC
σ DβΞ

)
(ζ) =

B (β)

1 − β

∫ t

σ
Ξ′ (ρ) e

−β(t−ρ)β

1−β dρ

and the associated fractional integral is(
CF
σ IβΞ

)
(ζ) =

1 − β

B (β)
Ξ (ζ) +

β

B (β)

∫ t

σ
Ξ (ρ) dρ

where B (β) > 0 is a normalization function satisfying B (0) = B (1) = 1. For the right fractional
derivative we have (

CFCDβ
ς Ξ
)
(ζ) =

−B (β)

1 − β

∫ ς

t
Ξ′ (ρ) e

−β(ρ−t)β

1−β dρ

and the associated fractional integral is(
CF Iβ

ς Ξ
)
(ζ) =

1 − β

B (β)
Ξ (ζ) +

β

B (β)

∫ ς

t
Ξ (ρ) dρ.

For more information related to different kinds of fractional operators, we recommend to
the readers the following papers (see [14? –26]).

The study of new inequalities for various types of convex functions is motivated by the
overarching goal of advancing mathematical tools for optimization, analysis, and understand-
ing of the properties of complex mathematical systems. By exploring and establishing new
inequalities tailored to different classes of convex functions, researchers aim to enhance the
theoretical foundation of convex analysis, offering more refined tools for problem-solving and
optimization. These inequalities contribute not only to the theoretical aspects of mathematics
but also find practical applications in fields such as control theory, machine learning, and signal
processing, where precise characterizations of convex functions and their relationships are vital
for designing efficient algorithms and understanding the dynamics of real-world systems. Thus,
the study of new inequalities for various convex functions align with the broader objective of
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advancing mathematical methodologies with widespread implications across scientific and
applied disciplines. In this viewpoint, the paper includes several new integral inequalities for
different kinds of convex functions via non-singular fractional integral operators.

2 New Inequalities for Quasi-Convex Functions

Theorem 2.1. Let I ⊆ R. Suppose that Ξ : [σ, ς] ⊆ I → [0, ∞) is a quasi-convex function on [σ, ς]
such that Ξ ∈ L1 [σ, ς] . Then, we have(

CF
σ IβΞ

)
(k) +

(
CF Iβ

ς Ξ
)
(k) ≤ 2 (1 − β)Ξ (k) + β (ς − σ)max {Ξ (σ) , Ξ (ς)}

B (β)

where B (β) > 0 is the normalization function β ∈ [0, 1] .

Proof. By using the definition of quasi-convex function, we can write

Ξ (ζσ + (1 − ζ) ς) ≤ max {Ξ (σ) , Ξ (ς)} .

By applying integration for the variable ζ over [0, 1] , we obtain∫ 1

0
Ξ (ζσ + (1 − ζ) ς) dζ ≤

∫ 1

0
max {Ξ (σ) , Ξ (ς)} dζ.

By changing of the variable as ρ = ζσ + (1 − ζ) ς and calculating the right hand side, we get

1
ς − σ

∫ ς

σ
Ξ (ρ) dρ ≤ max {Ξ (σ) , Ξ (ς)} .

By multiplying both sides of the above inequality with β(ς−σ)
B(β)

and adding 2(1−β)
B(β)

Ξ (k) , we have

2 (1 − β)

B (β)
Ξ (k) +

β

B (β)

∫ ς

σ
Ξ (ρ) dρ ≤ 2 (1 − β)

B (β)
Ξ (k) +

β (ς − σ)max {Ξ (σ) , Ξ (ς)}
B (β)

.

By simplifying the inequality, we get the following result(
(1 − β)

B (β)
Ξ (k) +

β

B (β)

∫ k

σ
Ξ (ρ) dρ

)
+

(
(1 − β)

B (β)
Ξ (k) +

β

B (β)

∫ ς

k
Ξ (ρ) dρ

)
≤ 2 (1 − β)

B (β)
Ξ (k) +

β (ς − σ)max {Ξ (σ) , Ξ (ς)}
B (β)

.

Namely, (
CF
σ IβΞ

)
(k) +

(
CF Iβ

ς Ξ
)
(k) ≤ 2 (1 − β)Ξ (k) + β (ς − σ)max {Ξ (σ) , Ξ (ς)}

B (β)
.

This completes the proof.

Theorem 2.2. Let I ⊆ R. Suppose that Ξ : [σ, ς] ⊆ I → [0, ∞) is an integrable function and |Ξ| is a
quasi-convex function on [σ, ς] such that Ξ ∈ L1 [σ, ς] . Then, we have(

CF
σ IβΞ

)
(k) +

(
CF Iβ

ς Ξ
)
(k) ≤

2 (1 − β)Ξ (k) pq + β (ς − σ)
(
q (max {|Ξ (σ)| , |Ξ (ς)|})p + p

)
B (β) pq

where B (β) > 0 is the normalization function q > 1, 1
p +

1
q = 1 and β ∈ [0, 1] .
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Proof. From the definition of quasi-convex function, we have

|Ξ (ζσ + (1 − ζ) ς)| ≤ max {|Ξ (σ)| , |Ξ (ς)|} .

By applying integration for the variable ζ on [0, 1] , we obtain∫ 1

0
|Ξ (ζσ + (1 − ζ) ς)| dζ ≤

∫ 1

0
max {|Ξ (σ)| , |Ξ (ς)|} dζ.

By using the celebrated Young’s inequality for the above inequality, we get∫ 1

0
|Ξ (ζσ + (1 − ζ) ς)| dζ ≤

(
1
p

∫ 1

0
(max {|Ξ (σ)| , |Ξ (ς)|})p dζ +

1
q

∫ 1

0
1qdζ

)
.

By changing of the variable as ρ = ζσ + (1 − ζ) ς and calculating the right hand side, it
yields that

1
ς − σ

∫ ς

σ
|Ξ (ρ)| dρ ≤ (max {|Ξ (σ)| , |Ξ (ς)|})p

p
+

1
q

If we product both sides of the above inequality with β(ς−σ)
B(β)

and adding 2(1−β)
B(β)

Ξ (k) , we can
write

2 (1 − β)

B (β)
Ξ (k) +

β

B (β)

∫ ς

σ
|Ξ (ρ)| dρ

≤2 (1 − β)

B (β)
Ξ (k) +

β (ς − σ)

B (β)

((
q (max {|Ξ (σ)| , |Ξ (ς)|})p + p

)
pq

)
.

By a simple arrangement, we get the result.

Theorem 2.3. Let I ⊆ R. Suppose that Ξ : [σ, ς] ⊆ I → [0, ∞) is a quasi geometrically-convex
function on [σ, ς] such that Ξ ∈ L1 [σ, ς] . Then, we have(

CF
σ Iβh̄

)
(k) +

(
CF Iβ

ς h̄
)
(k) ≤ 2 (1 − β) h̄ (k) + β (ln ς − ln σ) sup {Ξ (σ) , Ξ (ς)}

B (β)

where B (β) > 0 is the normalization function h̄ (ρ) = Ξ(ρ)
ρ and β ∈ [0, 1] .

Proof. By using the definition of quasi geometrically-convex function and integrating both sides
of the inequality over [0, 1] with respect to ζ, we can write , we get∫ 1

0
Ξ
(

σζς1−ζ
)

dζ ≤
∫ 1

0
sup {Ξ (σ) , Ξ (ς)} dζ.

By changing of the variable as ρ = σζς1−ζ and calculating the right hand side of the above
inequality, we obtain

1
ln ς − ln σ

∫ ς

σ

Ξ (x)
x

dx ≤ sup {Ξ (σ) , Ξ (ς)}

If we take h̄ (ρ) = Ξ(ρ)
ρ , we obtain

1
ln ς − ln σ

∫ ς

σ
h̄ (ρ) dρ ≤ sup {Ξ (a) , Ξ (b)}

https://ejamjournal.com/
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If we product both sides of the above inequality with β(ln ς−ln σ)
B(β)

and adding 2(1−β)
B(β)

h̄ (k) , we
can write

2 (1 − β)

B (β)
h̄ (k) +

β

B (β)

∫ ς

σ
h̄ (ρ) dρ ≤ 2 (1 − β)

B (β)
h̄ (k) +

β (ln ς − ln σ) sup {Ξ (σ) , Ξ (ς)}
B (β)

.

By making use of the necessary arrangements, we have the following inequality(
(1 − β)

B (β)
h̄ (k) +

β

B (β)

∫ k

σ
h̄ (ρ) dρ

)
+

(
(1 − β)

B (β)
h̄ (k) +

β

B (β)

∫ ς

k
h̄ (ρ) dρ

)
≤ 2 (1 − β)

B (β)
h̄ (k) +

β (ln ς − ln σ) sup {Ξ (a) , Ξ (b)}
B (β)

.

Which implies the result.

Theorem 2.4. Let I ⊆ R. Suppose that Ξ : [σ, ς] ⊆ I → [0, ∞) is an integrable function and |Ξ| is
quasi geometrically-convex function on [σ, ς] such that Ξ ∈ L1 [σ, ς] . Then, the following inequality is
valid:(

CF
σ Iβh̄

)
(k) +

(
CF Iβ

ς h̄
)
(k) ≤

2 (1 − β) h̄ (k) pq + β (ς − σ)
(
q (max {|Ξ (σ)| , |Ξ (ς)|})p + p

)
B (β) pq

where B (β) > 0 is the normalization function q > 1, 1
p +

1
q = 1, h̄ (ρ) = Ξ(ρ)

ρ and β ∈ [0, 1] .

Proof. By a similar argument to the proof of the previous theorem but now by applying Young
inequality, we get the proof.

3 New Inequalities for (h, m)−Convex Functions

Theorem 3.1. Let I ⊆ R. Suppose that Ξ : [σ, ς] ⊆ I → R is a (h, m)-convex function on [σ, ς] such
that Ξ ∈ L1 [σ, ς] . Then, we get the following inequality:(

CF
σ IβΞ

)
(k) +

(
CF Iβ

ς Ξ
)
(k)

≤ 2 (1 − β)

B (β)
Ξ (k) +

β (ς − σ)Ξ (σ)

B (β)

∫ 1

0
h (ζ) dζ +

β (ς − σ)mΞ (ς)

B (β)

∫ 1

0
h (1 − ζ) dζ

where B (β) > 0 is the normalization function and m, β ∈ [0, 1] .

Proof. By using the definition of (h, m)-convex function, we can write

Ξ (ζσ + (1 − ζ) ς) ≤ h (ζ)Ξ (σ) + mh (1 − ζ)Ξ (ς) .

By applying integration for the variable ζ on [0, 1] with respect to ζ, we get

∫ 1

0
Ξ (ζσ + (1 − ζ) ς) dζ ≤ Ξ (σ)

∫ 1

0
h (ζ) dζ + mΞ (ς)

∫ 1

0
h (1 − ζ) dζ.

By changing of the variable as ρ = ζσ + (1 − ζ) ς, we obtain

1
ς − σ

∫ ς

σ
Ξ (ρ) dρ ≤ Ξ (a)

∫ 1

0
h (ζ) dζ + mΞ (b)

∫ 1

0
h (1 − ζ) dζ.
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If we product both sides of the above inequality with β(ς−σ)
B(β)

and adding 2(1−β)
B(β)

Ξ (k) , we have

2 (1 − β)

B (β)
Ξ (k) +

β

B (β)

∫ ς

σ
Ξ (ρ) dρ

≤ 2 (1 − β)

B (β)
Ξ (k) +

β (ς − σ)Ξ (σ)

B (β)

∫ 1

0
h (ζ) dζ +

β (ς − σ)mΞ (ς)

B (β)

∫ 1

0
h (1 − ζ) dζ.

By simplifying the inequality, we get the following result(
(1 − β)

B (β)
Ξ (k) +

β

B (β)

∫ k

σ
Ξ (ρ) dρ

)
+

(
(1 − β)

B (β)
Ξ (k) +

β

B (β)

∫ ς

k
Ξ (ρ) dρ

)
≤ 2 (1 − β)

B (β)
Ξ (k) +

β (ς − σ)Ξ (σ)

B (β)

∫ 1

0
h (ζ) dζ +

β (ς − σ)mΞ (ς)

B (β)

∫ 1

0
h (1 − ζ) dζ.

It yields that(
CF
σ IβΞ

)
(k) +

(
CF Iβ

ς Ξ
)
(k)

≤ 2 (1 − β)

B (β)
Ξ (k) +

β (ς − σ)Ξ (σ)

B (β)

∫ 1

0
h (ζ) dζ +

β (ς − σ)mΞ (ς)

B (β)

∫ 1

0
h (1 − ζ) dζ.

The proof is completed.

Remark 3.2. If one chooses some special cases for the parameters β, m and the function h, some
earlier findings can be provided.

4 Conclusion

Fractional calculus is a branch of mathematical analysis that generalizes the concept of differ-
entiation and integration to non-integer orders. Unlike classical calculus, which deals with
integer-order derivatives and integrals (e.g., first, second, and third derivatives), fractional
calculus extends these operations to non-integer orders. Fractional calculus is a branch of math-
ematical analysis that generalizes the concept of differentiation and integration to non-integer
orders. Unlike classical calculus, which deals with integer-order derivatives and integrals (e.g.,
first, second, third derivatives), fractional calculus extends these operations to non-integer
orders. In essence, fractional calculus provides a richer framework for understanding and
describing complex systems that exhibit non-local and memory-dependent behaviors. Its im-
portance lies in its ability to offer more accurate models, improved control strategies, and better
insights into the dynamics of diverse natural and engineered systems. The relationship between
fractional calculus and inequalities is manifested in the study of fractional differential and
integral inequalities. These inequalities involve fractional derivatives or integrals of functions
and play a crucial role in analyzing the behavior of solutions to fractional differential equations.
Fractional inequalities have applications in diverse fields such as analysis, mathematical mod-
eling, and the study of complex systems. In this sense, we have proved some novel integral
inequalities for different kinds of convex functions via Caputo-Fabrizio fractional integral
operator.

Fractional calculus involves a diverse set of inequalities. Interested researchers can explore
both integral and differential inequalities and understand how they interconnect. Besides,
they can consider applications of fractional inequalities in different scientific and engineering
domains, such as physics, biology, finance, and control systems. Showcasing the versatility of
fractional inequalities can enhance their significance in the literature.

The authors will focus to explore and develop numerical methods for solving fractional
inequalities in the next studies. Because it is important to provide efficient algorithms for
solving fractional inequalities for practical applications and simulations.
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[10] İşcan İscan, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, Journal
of Inequalities and Applications. 2013 (2013):491.

[11] Abdeljawad Thabet, Baleanu Dumitru, On fractional derivatives with exponential kernel and their discrete versions,
J. Rep. Math. Phys. 80 (1) (2017), 11-27.

[12] Abdeljawad Thabet, Fractional operators with exponential kernels and a Lyapunov type inequality, Advances in
Difference Equations. 2017 (1) (2017), 313.

[13] Caputo Michele and Fabrizio Mauro, A new definition of fractional derivative without singular kernal, Prog. Fract.
Differ. Appl. 1 (2) (2015), 73-85.

[14] Abdeljawad Thabet, On conformable fractional calculus, Journal of Computational and Applied Mathematics.
279 (2015), 57-66.

[15] Abdeljawad Thabet, Baleanu Dumitru, Integration by parts and its applications of a new nonlocal fractional
derivative with Mittag-Leffler nonsingular kernel, (2016), arXiv preprint arXiv:1607.00262.



46 | Electron. J. Appl. Math. 2023, Vol. 1, No. 3
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