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Dynamics of a diffusive two predators-one prey system
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Abstract

The present article examines a diffusive model of predator-prey interaction, which includes a single
prey species and two predator species. The model implements a modified Leslie-Gower term with a
Holling type II scheme and is subject to the homogeneous Neumann boundary condition. Local stability
condition is derived through the application of Routh-Hurwitz criterion. Global asymptotic stability of
the singular positive steady state is shown by fitting a suitable Lyapunov function in the presence of
self-diffusion, the cross-diffusion has the potential to generate stationary patterns, and therefore enables
non-constant positive steady state. By taking cross-diffusion as a bifurcation parameter, it is possible
to show the existence of positive non-constant solutions with the help of bifurcation theory. A brief
conclusion completes the paper.
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1 Introduction

In recent years, many mathematical models have been formulated to predict the behavior of
different interacting species. In particular, the model dealing with predator-prey populations
where the predation process follows Holling type II response has received much attention from
the researchers. Considering real factors, a model that includes a modified Leslie-Gower (LG)
term is important to examine. This term signifies a relation between the carrying capacity of the
predator with the density of the prey. Various works on this scheme can be found in [1–3]. In [4],
the authors investigated a prey-predator interaction with LG term and obtained boundedness,
the viability of the steady state, and global stability of the positive steady state.

As long as the species are uniformly distributed, the study of the emergence and stability of
the constant equilibrium point in a mathematical model is significant. When the environment
faces non-homogeneity in species dispersion, the appearance of a non-constant positive solution
addresses an important aspect of a dynamical system. The investigation of finding such a steady
state is demonstrated in [5–7]. Ko and Ryu [8] studied the diffusive prey-predator interaction
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with LG term and observed that no non-constant positive solution exists when the population
is homogeneously distributed but a steady state which is positive as well as non-constant may
appear in case of general functional response. Hu and Li [9] found non-constant steady state in
a diffusive prey-predator system with the LG term. Quo and Guo [10] analyzed a diffusive and
advective LG model. Li et al. [31] discussed global asymptotic stability and stationary pattern of
a diffusive prey-predator system with LG term and diffusion. Predator-prey models with more
than two species create a major interest to the researchers. In the environment, populations are
mixed up and are not confined to just two species in a single habitat. So models are formed to
address complex dynamics for multiple species. The two predator-one prey model can be found
in [11]. Recently, Mirella Cappelletti and Lisena [12] analyzed the impact of diffusion on a single
prey and two predator system. They studied the asymptotic properties of the solutions of the
model. Recently, some articles have shown the role of diffusion on predator-prey interactions
[13–16].

Motivated by the above works, we are interested in examining a diffusive three species
predator-prey system with modified LG term and Holling type II schemes as follows:

∂p
∂t

= δ1∆p + p(r1 − ap − c1q1

h1 + p
− c2q2

h2 + p
), x ∈ Γ, t > 0

∂q1

∂t
= ∆(δ2q1 + δ3 pq1) + q1(r2 −

f1q1

h1 + p
), x ∈ Γ, t > 0

∂q2

∂t
= ∆(δ4q2 + δ5 pq2) + q2(r3 −

f2q2

h2 + p
), x ∈ Γ, t > 0

∂p
∂n

=
∂q1

∂n
=

∂q2

∂n
= 0, x ∈ ∂Γ

p(x, 0) = p0(x) > 0, q1(x, 0) = q10(x) > 0, q2(x, 0) = q20(x) > 0, x ∈ Γ

(1)

where p(t), q1(t) and q2(t) stand for the biomasses of prey, first predator, and the second
predator population respectively. r1, r2 and r3 represent the intrinsic growth rate of the prey
and two predators respectively. a represents the intra-specific competition coefficient among
the prey species. c1 and c2 denote the predation rate p. f1 and f2 carry the same meaning as of
c1 and c2. h1 and h2 stand for the environmental protection for predator q1 and q2 respectively.
We choose a domain Γ in RN where N is a positive integer. The boundary ∂Γ is assumed
to be smooth and the outward unit normal vector is designated as n. The diffusion terms
δi(i = 1, 2, 3) is known as self diffusion coefficient, which means how the species move in a
dispersive manner. The constant δ3 and δ4 measures the cross diffusion effect, which signifies
an associated intervene between two interacting populations. In this model, q1 diffuses with
flux:

J1 = −∇(δ2q1 + δ3 pq1) = −(δ2 + δ3 p)∇q1 − δ3q1∇p.

We note that the part −δ3q1∇p of the flux is in the direction of the population density of p
whose density decreases that means the prey population gather and make a large community
to avoid predation effect. Similarly q2 diffuses with flux:

J2 = −∇(δ4q2 + δ5 pq2) = −(δ4 + δ5 p)∇q2 − δ5q2∇p.

In recent years, there has been a major research interest in determining the spatial and temporal
patterns in ecological and chemical systems. In this article, our main aim is for a system of more
than two interacting species to examine the coexistence of all the species. When the interacting
population is homogeneously distributed, coexistence implies that the system finally approaches
an equilibrium point that is constant in nature whereas, for inhomogeneous cases, it means
the existence of non-constant positive solutions, which is referred to as a stationary pattern.
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From the literature [17], we know that diffusion and cross-diffusion have been identified as
reasons for the spontaneous occurrence of ordered structure, specifically a stationary pattern, in
a variety of circumstances when there is no equilibrium, for example Gierer-Meinhardt model
[18, 19], the Sel’kov model [20, 21], and the biological models [22–24] etc.

In this work, we mainly investigate the viability of positive stationary solutions of (1). For
this, we consider the following:

−δ1∆p = p(r1 − ap − c1q1

h1 + p
− c2q2

h2 + p
), x ∈ Γ, t > 0

−∆(δ2q1 + δ3 pq1) = q1(r2 −
f1q1

h1 + p
), x ∈ Γ, t > 0

−∆(δ4q2 + δ5 pq2) = q2(r3 −
f2q2

h2 + p
), x ∈ Γ, t > 0

∂p
∂n

=
∂q1

∂n
=

∂q2

∂n
= 0, x ∈ ∂Γ

p(x, 0) = p0(x) > 0, q1(x, 0) = q10(x) > 0, q2(x, 0) = q20(x) > 0, x ∈ Γ.

(2)

By direct computation, we can get a constant positive steady state of (2) X0 = (p∗, q∗1 , q∗2), where

p∗ =
1
a
(r1 f1 f2 − c1r2 f2 − c2r3 f1), q∗1 =

r2(h1 + p∗)
f1

, q∗2 =
r3(h2 + p∗)

f2

provided that
r1 f1 f2 > c1r2 f2 + c2r3 f1. (3)

In the entire article, 0 = ρ0 < ρ1 < ρ2 < . . . < ρn < . . . stands for the eigenvalues of −∆ in
Γ with the homogeneous Neumann boundary condition. m(ρi) represents the multiplicity of ρi
for any i ≥ 0.

The paper is structured in the following manner. Local and global stability of (p∗, q∗1 , q∗2) is
presented in Section 2. A priori estimate of the solutions of (2) which are positive is derived in
Section (3). We discussed the situation when the positive solutions exist and are non-constant
in Section 4. Section 5 establishes the same findings in the earlier section by the application of
bifurcation theory.

2 Nature of constant interior equilibrium

In this part, we do not take cross-diffusion in system (1) and present the following system:

∂p
∂t

= δ1∆p + p(r1 − ap − c1q1

h1 + p
− c2q2

h2 + p
), x ∈ Γ, t > 0

∂q1

∂t
= δ2∆q1 + q1(r2 −

f1q1

h1 + p
), x ∈ Γ, t > 0

∂q2

∂t
= δ4∆q2 + q2(r3 −

f2q2

h2 + p
), x ∈ Γ, t > 0

∂p
∂n

=
∂q1

∂n
=

∂q2

∂n
= 0, x ∈ ∂Γ

p(x, 0) = p0(x) > 0, q1(x, 0) = q10(x) > 0, q2(x, 0) = q20(x) > 0, x ∈ Γ.

(4)

2.1 Local stability

First, we state the result on the local behavior of the equilibrium point which is positive and
constant.
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Theorem 1. Assume that (3) holds. If

a >
c1q∗1

(h1 + p∗)2 +
c2q∗2

(h2 + p∗)2

then X0 is locally asymptotically stable

Proof. Let X = (p, q1, q2)T, X0 = (p∗, q∗1 , q∗2) and we denote

M(X) =

 p(r1 − ap − c1q1
h1+p −

c2q2
h2+p )

q1(r2 − f1q1
h1+p )

q2(r3 − f2q2
h2+p )

 .

Therefore,

MX(X0) =


−ap∗ + c1q∗1 p∗

(h1+p∗)2 +
c2q∗2 p∗

(h2+p∗)2 − c1 p∗
h1+p∗ − c2 p∗

h2+p∗

f1q∗1
2

(h1+p∗)2 − f1q∗1
h1+p∗ 0

f2q∗2
2

(h2+p∗)2 0 − f2q∗2
h2+p∗

 .

Linearising (4) at X0, we have
Xt = (D∆ + MX0)X,

where

D =

 δ1 0 0
0 δ2 0
0 0 δ4

 .

The characteristic polynomial of −µiD + MX(X0) is determined by

ψi(λ) = λ3 + a1λ2 + a2λ + a3,

where

a1 =µiδ1 − a11 + µiδ2 +
f1q∗1

h1 + p∗
+ µiδ4 +

f2q∗2
h2 + p∗

,

a2 =(µiδ2 +
f1q∗1

h1 + p∗
)(µiδ4 +

f2w∗

h2 + u∗ )

+ (µiδ1 − a11)(µiδ2 +
f1q∗1

h1 + p∗
+ µiδ4 +

f2q∗2
h2 + p∗

)

+
c1 f1 p∗q∗1

2

(h1 + p∗)3 +
c2 f2 p∗q∗2

2

(h1 + p∗)3 ,

a3 =(µiδ1 − a11)(µiδ2 +
f1q∗1

h1 + p∗
)(µiδ4 +

f2q∗2
h2 + p∗

)

+
c1 f1 p∗q∗1

2

(h1 + p∗)3 (µiδ4 +
f2q∗2

h2 + p∗
) +

c2 f2 p∗q∗2
2

(h1 + p∗)3 (µiδ2 +
f1q∗1

h1 + p∗
),

a11 =− p∗(a − c1q∗1
(h1 + p∗)2 − c2q∗2

(h2 + p∗)2 ).
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By the assumption of the theorem, a1, a2 and a3 are all positive. Moreover, a1a2 − a3 > 0.
Then using the well known criterion developed by Routh-Hurwitz, one can show that for each
i ≥ 1, all the three roots λi,1, λi,2 and λi,3 of ψi(λ) = 0 have negative real parts. Now it is
possible to find a δ > 0 such that

Re{λi1}, Re{λi2}, Re{λi3} ≤ −δ, i ≥ 1. (5)

Let λ = µiη, then we have

ψi(λ) = µ3
i η3 + a1µ2

i η2 + a2µiη + a3 ≜ ψ̄i(η).

Note that µi → ∞ as i → ∞. We get

lim
i→∞

ψ̄i(η)

µ3
i

= η3 + (δ1 + δ2 + δ4)η
2 + (δ2δ4 + δ1δ2 + δ1δ4)η + δ1δ2δ4 ≜ ψ̄(η)

It is to be noted that all the three roots η1, η2 and η3 of ψ̄(η) = 0 have negative real parts. So, we
can find a δ > 0 such that

Re{η1}, Re{η2}, Re{η3} ≤ −δ. (6)

By continuity, we get i0 ∈ N such that the three roots ηi1, ηi2 and ηi3 of ψ̄i(η) = 0 satisfy

Re{ηi1}, Re{ηi2}, Re{ηi3} ≤ − δ̄

2
, i ≥ i0. (7)

this leads that

Re{λi1}, Re{λi2}, Re{λi3} ≤ −µi δ̄

2
, i ≥ i0. (8)

Choose −δ̄ = max{Re{λi1}, Re{λi2}, Re{λi3}, then δ̄ is positive and (5) is satisfied whenever
δ = min{δ̄. δ̄

2}. Applying Theorem 5.1.1 in [25], we complete the proof.

2.2 Global stability

Now, our next aim in this section is to determine the condition for global behavior of (p∗, q∗1 , q∗2)
by applying the method used in [26] when there is no cross diffusion.

Theorem 2. If

a >
c1r2h2 f2 + c2r3h1 f1

h1h2 f1 f2

then (p∗, q∗1 , q∗2) is globally asymptotically stable

Proof. Consider the Lyapunov function

V(t) =
∫

Γ
[
∫ p

p∗

τ − p∗

dτ
dτ + λ1

∫ q1

q∗1

ζ − q∗1
dζ

dζ + λ2

∫ q2

q∗2

η − q∗2
dη

dη]dx
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where λ1 and λ2 are positive constants to be chosen later. We have

dV
dt

=
∫

Γ
(

p − p∗

p
∂p
∂t

+
q1 − q∗1

p
∂q1

∂t
+

q2 − q∗2
q2

∂q2

∂t
)dx

=
∫

Γ
(p − p∗)(r1 − ap − c1q1

h1 + p
− c2q2

h2 + p
− r1 + ap∗ +

c1q∗1
h1 + p∗

+
c2q∗2

h2 + p∗
)dx

+ λ1

∫
Γ
(q1 − q∗1)(r2 −

f1q1

h1 + p
− r2 +

f1q∗1
h1 + p∗

)dx

+ λ2

∫
Γ
(q2 − q∗2)(r3 −

f2q2

h2 + p
− r3 +

f2q∗2
h2 + p∗

)dx

− δ1 p∗
∫

Γ

|∇p|2
p2 dx − λ1δ2q∗1

∫
Γ

|∇q1|2
q2

1
dx − λ2δ4q∗2

∫
Γ

|∇q2|2
q2

2
dx

then

dV
dt

=− a
∫

Γ
(p − p∗)2dx +

c1 − λ1 f1q∗1
h1 + p∗

∫
Γ

(p − p∗)(q1 − q∗1)
h1 + p

dx

+
c1q∗1

h1 + p∗

∫
Γ

(p − p∗)2

h1 + p
dx +

c2 − λ2 f2q∗2
h2 + p∗

∫
Γ

(p − p∗)(q2 − q∗2)
h2 + p

dx

+
c2q∗2

h2 + p∗

∫
Γ

(p − p∗)2

h2 + p
dx − λ1 f1

∫
Γ

(q1 − q∗1)
2

h1 + p
dx

− λ2 f2

∫
Γ

(q2 − q∗2)
2

h2 + p
dx − δ1 p∗

∫
Γ

|∇p|2
p2 dx − λ1δ2q∗1

∫
Γ

|∇q1|2
q2

1
dx

− λ2δ4q∗2
∫

Γ

|∇q2|2
q2

2
dx.

Choose λ1 = c1
f1q∗1

, and λ2 = c2
f2q∗2

then

dV
dt

≤− [a − c1q∗1
h1(h1 + p∗)

− c2q∗2
h2(h2 + p∗)

]
∫

Γ
(p − p∗)2dx

− λ1 f1

∫
Γ

(q1 − q∗1)
2

h1 + p
dx − λ2 f2

∫
Γ

(q2 − q∗2)
2

h2 + p
dx − δ1 p∗

∫
Γ

|∇p|2
p2 dx

− λ1δ2q∗1
∫

Γ

|∇q1|2
q2

1
dx − λ2δ4q∗2

∫
Γ

|∇q2|2
q2

2
dx

=− [a − c1r2

h1 f1
− c2r3

h2 f2
]
∫

Γ
(p − p∗)2dx − λ1 f1

∫
Γ

(q1 − q∗1)
2

h1 + p
dx

− λ2 f2

∫
Γ

(q2 − q∗2)
2

h2 + p
dx − δ1 p∗

∫
Γ

|∇p|2
p2 dx

− λ1δ2q∗1
∫

Γ

|∇q1|2
q2

1
dx − λ2δ4q∗2

∫
Γ

|∇q2|2
q2

2
dx ≤ 0

which implies the desired assertion.

3 Estimation of positive solution of (2)

In this part, we now estimate of those solutions of (2) which are positive. We need two lemmas
of which first one is developed in [27] and the second one in [28] respectively. We state the
lemma on maximum principle.
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Lemma 3. Assume that f ∈ C(Γ̄ × R).

i. Let r ∈ C2(Γ) ∩ C1(Γ̄) and fulfills{
∆r(x) + f (x, r(x)) ≥ 0 in Γ,
∂r
∂n ≤ 0 in ∂Γ

If r(x0) = maxΓ̄r(x), then f (x0, r(x0)) ≥ 0.
ii. Suppose that r ∈ C2(Γ) ∩ C1(Γ̄) and satisfies{

∆r(x) + f (x, r(x)) ≤ 0 in Γ,
∂r
∂n ≥ 0 in ∂Γ.

If r(x0) = minΓ̄r(x), then f (x0, r(x0)) ≤ 0.

Our next lemma is designated as Harnack inequality.

Lemma 4. Let r ∈ C2(Γ) ∩ C1(Γ̄) and satisfy ∆r(x) + c(x)r(x) = 0 in Γ, suchthat c ∈ C(Γ̄),
follows the homogeneous Neumann boundary condition. So one can find C > 0, depending only on
B satisfying ∥c∥∞ ≤ B for which

maxΓ̄r(x) ≤ CminΓ̄r(x)

Now we state the result on the upper bound.

Theorem 5. Suppose that solution X(x) = (p(x), q1(x), q2(x))T of (2) is positive. Then it fulfills

maxΓ̄ p(x) ≤ M1, maxΓ̄q1(x) ≤ M2, maxΓ̄q2(x) ≤ M3 (9)

where

M1 =
r1

a
, M2 =

r2(aδ2 + δ3r1)(ah1 + r1)

a2 f1δ2
, M3 =

r3(aδ4 + δ5r1)(ah2 + r1)

a2 f2δ4
.

Proof. Choose x0 ∈ Γ̄ such that p(x0) = maxΓ̄ p(x). From Lemma 3, we find

r1 − ap(x0)−
c1 p(x0)

h1 + p(x0)
− c2q2(x0)

h2 + p(x0)
≥ 0

and hence
p(x0) = maxΓ̄ p(x) ≤ r1

a
≜ M1.

Let ψ(x) = δ2q1 + δ3 pq1 and ψ(x1) = maxΓ̄ψ. Thus

q1(x1)(r2 −
f1q1(x1)

h1 + p(x1)
≥ 0.

It follows from above that

q1(x1) ≤
r2(ah1 + r1

a f1
.

Then we have

δ2maxΓ̄q1 = ψ(x1) = δ2q1(x1) + δ3q1(x1)p(x1)

≤ (δ2 + δ3maxΓ̄ p)q1(x1) ≤ (δ2 +
δ3r1

a
)

r2(ah1 + r1)

a f1
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which implies that

maxΓ̄q1 ≤ r2(aδ2 + δ3r1)(ah1 + r1)

a2 f1δ2
= M1(say).

From the first equation of (2), we find by using Lemma 4 that

maxΓ̄ p ≤ k1minΓ̄ p

where k1 > 0. The second equation of (2) can be rewritten as:

−∆ψ = ψ(r2 −
f1q1

h1 + p
)(δ2 + δ3 p)−1 = qψ (10)

Now

∥q∥∞ = ∥(r2 −
f1q1

h1 + p
)(δ2 + δ3 p)−1∥∞ ≤ 1

δ2
(r2 +

M1

r1
).

Applying the Harnack inequality to (10), we find a positive constant k2 such that

maxΓ̄ψ ≤ k2minΓ̄ψ.

From the formula of ψ, we have q1 = ψ
δ2+δ3 p and

maxΓ̄q1

minΓ̄q1
≤ maxΓ̄ψ

δ2 + δ3minΓ̄ p
/

minΓ̄ψ

δ2 + δ3maxΓ̄ p
≤ maxΓ̄ψ

minΓ̄ψ

maxΓ̄ p
minΓ̄ p

≤ k1k2.

It is deduced from the above
maxΓ̄q1 ≤ k3minΓ̄q1.

Similarly, we can show that

maxΓ̄q2 ≤ r3(aδ4 + δ5r1)(ah2 + r1)

a2 f2δ4
= M3(say)

and
maxΓ̄q2 ≤ k4minΓ̄q2

where k4 is a positive constant.

We state results on lower bounds.

Theorem 6. Let

r1 >
c1M1h2 + c2M2h1

h1h2
.

For each positive solution (p(x), q1(x), q2(x)) of (2), one has

minΓ̄ p(x) ≥ l, minΓ̄q1(x) ≥ m, maxΓ̄q2(x) ≥ n, (11)

where

l =
1
a
(r1 −

c1M1

h1
− c2M2

h2
), m =

r2(h1 + l)
f1

, n =
r3(h2 + l)

f2

https://ejamjournal.com/
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Proof. Let x0 ∈ Γ̄ such that p(x0) = minΓ̄. Clearly from Lemma 3, we get

p(x0){r1 − ap(x0)−
c1q1(x0)

h1 + p(x0)
− c2q2(x0)

h2 + p(x0)
} ≤ 0.

It follows from above that

ap(x0) ≥ r1 −
c1q1(x0)

h1 + p(x0)
− c2q2(x0)

h2 + p(x0)
≥ r1 −

c1M1

h1
− c2M2

h2

which implies that

p(x0) ≥
1
a
(r1 −

c1M1

h1
− c2M2

h2
) = l.

Let x1 ∈ Γ̄ such that q1(x1) = minΓ̄q1. Then by Lemma 3, it is evident that

q1(x1)(r2 −
f1q1(x1)

h1 + p(x1)
) ≤ 0.

It follows from above that

q1(x1) ≥
r2(h1 + p(x1))

f1
≥ r2(h1 + l)

f1
= m.

Let x2 ∈ Γ̄ such that q2(x2) = minΓ̄q2. Then by Lemma 3, we get

q2(x2)(r3 −
f2q2(x2)

h2 + p(x2)
) ≤ 0.

It follows from above that

q2(x2) ≥
r3(h2 + p(x2))

f1
≥ r2(h2 + l)

f2
= n.

4 Emergence of non-constant positive solution

In this part, we will show that the cross-diffusion can ensure the existence of non-constant
positive solution to (2). Let

X = (p, q1, q2)
T,

X0 = (p∗, q∗1 , q∗2),

Φ(X) = (δ1 p, δ2q1 + δ3 pq1, δ4q2 + δ5 pq2)
T,

then system (2) becomes −∆Φ(X) = M(X), where M(X) is already defined in Theorem 1.
Clearly, the solution X of (2) is positive whenever

P(X) = X − (I − ∆)−1{Φ−1
X (X)[M(X) +∇XΦXX(X)∇XT] + X} = 0. (12)

Using a result in [29], and the similar reasoning as in [30], we realize that to simplify our
calculation of index (I − P, X0), we require to find out the sign of N(θ), where N(θ) is defined
by

N(θ) = det{Φ−1
X (X0)}det{θΦX(X0)− MX(X0)}. (13)
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After some calculation, we can show that det{Φ−1
X (X0)} > 0 and

det{θΦX(X0)− MX(X0)} = Q3(δ3)θ
3 + Q2(δ3)θ

2 + Q1(δ3)θ + Q0(δ3) = Q(δ3; θ)

where

Q3(δ3) =δ1(δ2 + δ3 p∗)(δ4 + δ5 p∗),

Q2(δ3) =− a11(δ2 + δ3 p∗)(δ4 + δ5 p∗) + [δ1{(δ2 + δ3 p∗)
f2q∗2

h2 + p∗

+ (δ4 + δ5 p∗)
f1q∗1

h1 + p∗
} − c1δ3 p∗q∗1(δ4 + δ5 p∗)

h1 + p∗
− c2δ5 p∗q∗2(δ2 + δ3 p∗)

h2 + p∗
],

Q1(δ3) =
δ1 f1 f2q∗1q∗2

(h1 + p∗)(h2 + p∗)
− a11{(δ2 + δ3 p∗)

f2q∗2
h2 + p∗

+ (δ4 + δ5 p∗)
f1q∗1

h1 + p∗
}

− c1 p∗

h1 + p∗
{δ3 f2q∗1q∗2

h2 + p∗
− f1q∗12(δ4 + δ5 p∗)

(h1 + p∗)2 }

− c2 p∗

h2 + p∗
{δ5 f1q∗1q∗2

h1 + p∗
− f2q∗22(δ2 + δ3 p∗)

(h2 + p∗)2 },

Q0(δ3) =− f1 f2q∗1q∗2
(h1 + p∗)(h2 + p∗)

{a11 −
c1 p∗q∗1

(h1 + p∗)2 − c2 p∗q∗2
(h2 + p∗)2 }.

Let the three roots of Q(δ3; θ) = 0 be θ̄1, θ̄2 and θ̄3 respectively such that

Re(θ̄1) ≤ Re(θ̄2) ≤ Re(θ̄3).

Note that Q0 > 0 when

a11 <
c1 p∗q∗1

(h1 + p∗)2 +
c2 p∗q∗2

(h2 + p∗)2

and Q3 > 0. Then θ̄1θ̄2θ̄3 = −Q0
Q3

< 0. Evidently, one of the three roots θ̄1, θ̄2 and θ̄3 is real and
negative while the product of the other two is positive. Note the limits given below:

lim
δ3→∞

Q0(δ3)

δ3
= 0,

lim
δ3→∞

Q1(δ3)

δ3
= − f2 p∗q∗2

h2 + p∗
{a11 +

c1q∗1
h1 + p∗

− c2q∗2 p∗

(h2 + p∗)2 } ≜ b1,

lim
δ3→∞

Q2(δ3)

δ3
= −p∗(δ4 + δ5 p∗)(a11 +

c1q∗1
h1 + p∗

) +
p∗q∗2

h2 + p∗
(δ1 f2 − c2δ5 p∗) ≜ b2,

lim
δ3→∞

Q3(δ3)

δ3
= δ1 p∗(δ4 + δ5 p∗) ≜ b3.

It is easy to see that b3 > 0. Note that

lim
δ3→∞

Q(δ3; θ)

δ3
= b3θ3 + b2θ2 + b1θ = θ(b3θ2 + b2θ + b1).

The equation b3θ2 + b2θ + b1 = 0 may possess two strictly roots whenever:

b1 > 0, b2 < 0, b2
2 − 4b1b3 > 0. (14)
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For sufficiently large value of δ3 , θ̄1 < 0 and θ̄2 and θ̄3 > 0 as µ̄2µ̄3 > 0. Again, we have

lim
δ3→∞

θ̄1 = 0,

lim
δ3→∞

θ̄2 =
−b2 −

√
b22 − 4b1b3

2b3
≜ θ∗2 > 0,

lim
δ3→∞

θ̄3 =
−b2 +

√
b22 − 4b1b3

2b3
≜ θ∗3 > 0. (15)

We can find a δ∗3 > 0 as long as δ3 > δ∗3 , such that: −∞ < θ̄1 < 0 < θ̄2 < θ̄3{
Q(δ3; θ) < 0 if θ ∈ (−∞, θ̄1) ∪ (θ̄2, θ̄3)

Q(δ3; θ) > 0 if θ ∈ (θ̄1, θ̄2) ∪ (θ̄3, ∞).

Since θ̄∗2 ∈ (θi, θi+1) and θ̄∗3 ∈ (θj, θj+1) for some j > i > 0, Q(δ3; θk) is negative for i + 1 < k <
j + 1. Thus from the previous analysis, we state the theorem below.

Theorem 7. Suppose δ1, δ2, δ4 and δ5 be fixed and satisfy the assumption of Theorem 6 and (14) and
let θ∗2 and θ∗3 be defined in (15). If θ̄∗2 ∈ (θi, θi+1) and θ̄∗3 ∈ (θj, θj+1) for some j > i ≥ 1, and the
sum Σj

n=i+1m(θn) is odd, then one can find a δ∗3 > 0 for which if δ3 ≥ δ∗3 , (2) possesses at least one
non-constant positive solution

Proof. We establish the result by the method of contradiction. Suppose that for some δ3 = δ̄3 ≥
δ∗3 , system (2) does not possess non-constant solutions. Next, take δ3 = δ̄3 ≥ δ∗3 , for t ∈ [0, 1],
define

Φ(t; X) = (δ1 p, δ2q1 + tδ3 pq1, δ4q2 + tδ5 pq2)
T.

Then (2) becomes

−∆Φ(t; X) = M(X), x ∈ Γ
∂X
∂n

= 0, x ∈ ∂Γ.
(16)

Clearly, for t ∈ [0, 1], there exists only one positive solution X0 (16) and X is a positive solution
of system (2) whenever X is a positive solution of system (16) for t = 1.X is a positive solution
of system (16) whenever

P(X) = U − (I − ∆)−1{Φ−1
X (X)[M(X) +∇XΦXX(X)∇XT] + X} = 0.

By a priori estimates, it can be shown that the region

E = {(p, q1, q2) : C < p, q1, q2 < D}

contains all the positive solutions of system (16), where

C = max{l, m, n}, D = max{M1, M2, M3}

and P(t; X) is non-zero on ∂E. So deg(P(t; X), E, 0) is clear. Using topology degree theory, one
can get

deg(P(1, ·), E, 0) = deg(P(0, ·), E, 0). (17)

Note that

N(t; θ) = det{Φ−1
X (t; X0)}det{θΦX(t; X0)− MX(X0)} (18)
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and when t = 0, N(0; θ) > 0 by the assumption (14). By means of the result
index(I − P(t, ·), X0) = (−1)σ where σ = Σn≥1,N(θn)<0m(θn). We get

index(I − P(0, ·), X0) = (−1)0 = 1. (19)

By the assumption, that system (2) does not possess any non-constant positive solution and

Σj
n=i+1m(θn), is odd, then we obtain index(I − P(1, ·), X0) = (−1)Σj

n=i+1m(θn) = 1. Moreover,
P(1; 0) = 0 and P(0; X) = 0 possess a unique positive solution X0 on E. Thus

deg(P(0, ·), E, 0) = index(I − P(0, ·), X0) = 1, (20)
deg(P(1, ·), E, 0) = index(I − P(1, ·), X0) = −1. (21)

Thus (20), (21) contradict with (17). This completes the proof.

5 Non-constant solution through bifurcation

Now, with the help of bifurcation theory it is possible to show the existence of non-constant
positive solutions of (2). Keeping the parameters r1, r2, r3, c1, c2, h1, h2, f1, f2, δ1, δ2, δ4 fixed and
taking δ3 as a key parameter, we develop the result.

Definition 8. (δ∗3 , X0) is regarded as a bifurcation point of (2) given any δ ∈ (0, δ∗3 ), one can
find a δ3 ∈ [δ∗3 − δ, δ∗3 + δ] such that system (2) has a non-constant positive solution. Otherwise,
(δ∗3 , X0) is a regular point.

Define Q = {θ > 0 |h(θ) = 0} and Ss = {θ2, θ3, θ4, · · · }, where N(θ) is defined by (17). To
highlight the dependence of N(θ), P(θ) and Q on δ3, we designate these by N(δ3; µ), P(δ3; θ)
and Q(δ3; X) respectively, where P(X) is defined by (12). The proof of the result below is similar
to a result in [30] and the proof is not given here.

Theorem 9. Let δ∗3 > 0.

i. If Ss ∪ Q(δ∗3 ) = ϕ, then (δ∗3 , X0) is a regular point of system (2).
ii. Suppose Ss ∪Q(δ∗3 ) ̸= ϕ, and the positive roots of N(δ∗3 ; θ) = 0 are all simple. If Σθj∈Q(δ∗3 )

m(θj)is
odd, then (δ∗3 , X0) is a bifurcation point of system (2).

6 Discussion

The current article has investigated a diffusive modified LG model of predator-prey interaction
consisting of three species with Holling type II schemes. We consider the spatial inhomogeneity
in the environment. The diffusive system follows homogeneous Neumann boundary states.

From Theorem 1, we note that if the intra-specific competition coefficient of the prey species
exceeds a certain threshold value then the constant positive steady state is locally asymptotically
stable. This result indicates that, if there is no cross-diffusion then the diffusion driven instability
cannot occur. If the condition of the Theorem 1 is reversed, local stability can be achieved under
the influence of self-diffusion of prey species. We have also derived the condition for global
stability of the constant positive steady state by forming an appropriate Lyapunov function.
By applying the maximum principle and Harnack inequality, it is possible to find the priori
estimate to the positive solutions which are reflected in Theorems 5 and 6. We have shown
that under certain constraints, cross-diffusion can induce stationary patterns. This fact can
be considered as a modification of Turing pattern. Lastly, we have identified the parameter
δ3 to obtain bifurcation of the system. We can find a similar phenomenon by considering the
parameter δ5 also. In [31], the authors studied the same type of model with a single predator,
while multiple predators are not investigated yet for obtaining coexistence results.
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