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Abstract

In this study, we study a variant of the Boussinesq equation called as B (n + 1, 1, n) equation, and
construct some traveling wave solutions by using an effective approach called the extended trial equation
method. Thus, the soliton solutions, rational function solutions, elliptic function solutions and Jacobi
elliptic function solutions, which show the existence of various mathematical and physical structures
and events in the fundamental equation considered, have been constructured. In order to make a more
detailed examination of the physical behavior of these solutions, two- and three-dimensional graphs of
some solution functions were drawn with the help of the Mathematica package program. In the section
of Discussion, we suggest a more general version of the trial equation method for nonlinear differential
equations.
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1 Introduction

Partial differential equations (PDEs) are mathematical equations that describe how quantities
such as temperature, pressure, or velocity vary in space and time. They are widely used in
various fields, including physics, engineering, biology, and finance. While many PDEs can
be solved numerically using computer algorithms, finding exact solutions to PDEs is often
challenging and requires sophisticated mathematical techniques. Exact solutions to PDEs are
useful as they provide insights into the behavior of the system being described by the equation.
They can reveal symmetries, conservation laws, and other fundamental properties of the
system. Moreover, exact solutions can serve as benchmarks for numerical algorithms, helping
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to validate their accuracy and efficiency. Finding exact solutions to PDEs involves solving the
equation analytically, i.e., finding a mathematical expression that satisfies the equation. This is
typically done by assuming a certain functional form for the solution and then determining
the parameters or functions that make the equation hold. The choice of the functional form
depends on the specific PDE and the physical problem being described. There are several
techniques for constructing exact solutions to PDEs. Some of the commonly used methods
include separation of variables, the method of characteristics, similarity transformations, and
integral transforms. Each method has its own set of assumptions and limitations, and the choice
of method depends on the particular PDE and its boundary or initial conditions. Exact solutions
to PDEs can take various forms, including simple analytical expressions, series expansions, or
special functions such as Bessel functions or hypergeometric functions. These solutions can be
classified into different types, such as traveling wave solutions, soliton solutions, or periodic
solutions, depending on their behavior. In addition to finding exact solutions to PDEs, it is
also important to analyze their stability and dynamical properties. Perturbation analysis, linear
stability analysis, and bifurcation theory are some of the tools used to study the behavior of
solutions to PDEs. Despite the challenges involved, constructing exact solutions to PDEs is a
crucial endeavor in nonlinear science. It provides theoretical understanding and insight into
complex phenomena, and it has practical applications in various fields. The development of
new techniques and methods for solving PDEs is an active area of research, aiming to uncover
the secrets hidden within these fundamental equations. These problems can be analyzed by the
numerous methods such as Sardar-subequation method [1, 2], the extended F-expansion method
[3], the modifed simple equation method [4], Jacobi elliptic function expansion method [5], the
generalized unified method [6, 7], the generalized exponential rational function method [8–10],
the linear superposition principle [11, 12]. These methods, that give the exact solutions, are used
to solve nonlinear problems where an analytical solution is not readily available. Also, these
methods provide valuable tools for solving nonlinear problems and can be adapted to different
types of equations. This approach has been successful in providing a systematic way to identify
and classify the different types of traveling wave solutions that can exist for a given nonlinear
evolution equation. The complete discrimination system for a polynomial involves the use
of a set of discriminant constraints that are derived from the polynomial equation describing
the nonlinear evolution equation. These discriminant constraints are used to determine the
different types of solitary wave solutions, such as solitons, breathers, and kink waves, that can
exist for the equation [13, 14]. Liu has applied this approach to a variety of nonlinear PDEs.
By using the complete discrimination system, Liu has been able to systematically identify and
classify the different types of traveling wave solutions for these equations. Using the trial
equation method proposed by Liu, several authors have been able to analyze complex physical
problems and derive valuable results in wave theory [15–20]. On the other hand, the extended
trial equation method, is introduced by Gurefe et al. [21–23], is based on the concept of solitons
and integrable systems. It involves constructing trial equations for the solutions of the nonlinear
PDEs by incorporating soliton solutions and elliptic integral functions. The trial equation
method also allows for the construction of solutions involving elliptic integral functions and
Jacobi elliptic functions. These special functions arise in the study of mathematical physics and
have a wide range of applications. Generally, the trial equation method provides a systematic
approach for obtaining solutions to nonlinear PDEs with generalized evolution. It allows for
the construction of a variety of solution types, including solitons, singular solitons, elliptic
integral functions, and Jacobi elliptic functions. In the case of the variant of the Boussinesq
equation with generalized evolution, it can be started by considering the original Boussinesq
equation, which is a PDE that describes the propagation of long waves in shallow water [24].
To apply the extended trial equation method to this variant, it can be assumed a trial equation
that satisfies the general form of the Boussinesq equation, including the generalized evolution
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terms. The B (n + 1, 1, n) equation can be shown in the form of

utt − a
(

un+1
)

xx
− b(u(un)xx)xx = 0, (1)

where a and b are real valued constants. The purpose of this paper is to obtain the classification
of the wave solutions to Eq. (1), we employ the extended trial equation method. This method
allows us to find the general form of the solutions and categorize them based on their charac-
teristics. One of the new solutions we discover is the singular soliton, which is characterized
by a localized wave profile with strong amplitude modulation. Another set of new solutions
we derive are the elliptic integral functions F, E, and pi, and Jacobi elliptic function solutions.
These solutions are expressed in terms of special functions that arise in the theory of elliptic
integrals and elliptic functions. The newly discovered solutions, such as the singular soliton
and the elliptic integral and Jacobi elliptic function solutions, open up new possibilities in the
study and utilization of wave phenomena in various scientific and technological disciplines.

2 The extended trial equation method

Step 1. The general form of a PDE in two variables, x and t, and a dependent variable, u (x, t),
can be written as:

P (u, ut, ux, uxx, uxxx, · · · ) = 0, (2)

and under the general wave transformation

u (x1, x2, · · · , xN , t) = u (η) , η = λ

(
N

∑
j=1

xj − ct

)
, (3)

where λ ̸= 0 and c ̸= 0. By substituting Eq. (3) into Eq. (2), a nonlinear differential equation
can be found as follows:

N
(
u, u′, u′′, u′′′, · · ·

)
= 0. (4)

Step 2. The solution function is as follows:

u =
δ

∑
i=0

τi Γi, (5)

where the trial equation is

(
Γ′)2

= Λ (Γ) =
Φ (Γ)
Ψ (Γ)

=
ξθΓθ + · · ·+ ξ1Γ + ξ0

ζεΓε + · · ·+ ζ1Γ + ζ0
. (6)

From the relations (5) and (6), we get

(
u′)2

=
Φ (Γ)
Ψ (Γ)

(
δ

∑
i=0

i τiΓi−1

)2

, (7)

u′′ =
Φ′ (Γ)Ψ (Γ)− Φ (Γ)Ψ′ (Γ)

2Ψ2 (Γ)

(
δ

∑
i=0

i τiΓi−1

)
+

Φ (Γ)
Ψ (Γ)

(
δ

∑
i=0

i (i − 1) τiΓi−2

)
, (8)

where Φ (Γ) and Ψ (Γ) are different polynomials of Γ. Substituting above two relations into Eq.
(4) produces an equation of polynomial Ω (Γ) of Γ:

Ω (Γ) = ρsΓs + · · ·+ ρ1Γ + ρ0 = 0. (9)

https://ejamjournal.com/
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A very important relation between the values of θ, ε and δ is obtained by applying the balance
principle. The values θ, ε and δ required for the application of the method can be chosen by this
relation.

Step 3. By setting all coefficients of Ω (Γ) equal to zero, a system of nonlinear algebraic
equations is obtained

ρi = 0, i = 0, · · · , s. (10)

Solving the system (10), the values of ξ0, · · · , ξθ ; ζ0, · · · , ζε and τ0, · · · , τδ can be determined.

Step 4. Since Eq. (6) is a separable differential equation, it can be reduced to a simple form as

± (µ − µ0) =
∫ dΓ√

Λ (Γ)
=

√
G (Γ)
F (Γ)

dΓ. (11)

Eq. (11) can be solved with the help of the Mathematica package program by using a complete
discrimination system of a polynomial used to find the roots of the algebraic equation, and thus
the exact solutions of Eq. (4) can be achieved. The solutions obtained here enable the solutions
of Eq. (2) to be easily reached.

3 Application to a variant of the Boussinesq equation

In Section 2, we proposed a method called the extended trial equation method to solve a specific
equation. Now, in this section, we will apply that method to B (n + 1, 1, n) equation we are
currently working with. To construct the traveling wave solutions of Eq. (1), we apply the
traveling wave transformation u(x, t) = u(η), η = x − ct where is an arbitrary constant. Then,
integrating this equation with respect to η twice and equating the integration constant to zero,
we can easily write

c2u − aun+1 − b
(

u(un)
′′
)
= 0. (12)

We substitute the following transformation into Eq. (12)

u = v−
1
n . (13)

Eq. (12) turns into the following equation

c2v3 − av2 − 2b(v′)2 − bvv′′ = 0. (14)

According to the balance procedure, substituting Eqs. (7) and (8) into Eq. (14) yields the balance
relation as θ = ε + δ + 2. By applying the solution procedures explained in detail in Section 2,
the solutions as follows are obtained:

Case 1. If we get ε = 0, δ = 1 and θ = 3, then

(
v′
)2

=
τ2

1

(
ξ0 + ξ1Γ + ξ2Γ2 + ξ3Γ3)

ζ0
,

v′′ =
τ1(ξ1 + 2ξ2Γ + 3ξ3Γ2)

2ζ0
, (15)

where ξ3 ̸= 0, ζ0 ̸= 0. The system of the nonlinear algebraic equations, which was revealed
with the help of the above equations and the coefficients of the polynomial Γ, is coded in the
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Mathematica package program and the parametric solutions of this system are obtained as
follows:

ξ0 = −11ξ2
1

16ξ2
, ξ1 = ξ1, ξ2 = ξ2, ξ3 =

24ξ2
2

121ξ1
, τ0 = τ0, τ1 =

4ξ2τ0

11ξ1
, ζ0 =

21bξ2

11a
, c =

√
a
τ0

. (16)

When the coefficients determined as seen in Eq. (16) are written into Eqs. (6) and (11), respec-
tively, an integral form as follows is obtained

± (η − η0) =

√
231bξ1

24aξ2

∫ 1√
Γ3 + 121ξ1

24ξ2
Γ2 +

121ξ2
1

24ξ2
2

Γ − 1131ξ3
1

384ξ3
2

dΓ. (17)

The various solutions for Eq. (1) have been constructed by integrating Eq. (17):

± (η − η0) = − 2A√
Γ − α1

, (18)

± (η − η0) =
2A√

α2 − α1
arctan

(√
Γ − α2

α2 − α1

)
, α2 > α1, (19)

± (η − η0) =
A√

α1 − α2
ln
∣∣∣∣√Γ − α2 −

√
α1 − α2√

Γ − α2 +
√

α1 − α2

∣∣∣∣ , α1 > α2, (20)

± (η − η0) =
2A√

α1 − α3
F (φ, l) , α1 > α2 > α3, (21)

where

A =

√
231bξ1

24aξ2
, F (φ, l) =

φ∫
0

1√
1 − l2 sin2 ϕ

dϕ, (22)

and

φ = arcsin

(√
Γ − α3

α2 − α3

)
, l2 =

α2 − α3

α1 − α3
. (23)

Here, the values α1, α2 and α3 are the roots of an algebraic equation arising from a 3rd degree
polynomial

Γ3 +
ξ2

ξ3
Γ2 +

ξ1

ξ3
Γ +

ξ0

ξ3
= 0. (24)

When Eqs. (18)-(21) were substituted in Eqs. (5) and (13), respectively, the rational, hyperbolic
and Jacobi elliptic function solutions are obtained:

u1,1 (x, t) =

τ0 + τ1α1 +
4τ1A2(

x −
√

a
τ0

t − η0

)2


− 1

n

, (25)

u1,2 (x, t) =
{

τ0 + τ1α2 + τ1 (α1 − α2) tanh2
[√

α1 − α2

2A

(
x −

√
a
τ0

t − η0

)]}− 1
n

, (26)

u1,3 (x, t) =
{

τ0 + τ1α1 + τ1 (α1 − α2) csc h2
[√

α1 − α2

2A

(
x −

√
a
τ0

t − η0

)]}− 1
n

, (27)
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Figure 1: The solution (29) is shown at the above two or three dimensional graphs for the values
τ0 = a = b = −1, τ1 = α1 = ξ1 = ξ2 = 1, n = −2, t = 1.

u1,4 (x, t) =
{

τ0 + τ1α3 + τ1 (α2 − α3) sn2
[
±
√

α1 − α3

2A

(
x −

√
a
τ0

t − η0

)
,

α2 − α3

α1 − α3

]}− 1
n

. (28)

If we specially choose τ0 = −τ1α1 and η0 = 0, then the solutions given in Eqs. (25)-(28) can be
easily transformed to the rational, 1-soliton, singular soliton solutions respectively,

u1,1 (x, t) =

(
Ã

x − κt

)− 2
n

, (29)

u1,2 (x, t) =
A1

cosh− 2
n [B (x − κt)]

, (30)

u1,3 (x, t) =
A2

sinh− 2
n [B (x − κt)]

, (31)

where

Ã = 2A
√

τ1, A1 = (τ1 (α2 − α1))
− 1

n , A2 = (τ1 (α1 − α2))
− 1

n , B =

√
α1 − α2

2A
, κ =

√
− a

τ1α1
.

While κ and B define the velocity and inverse amplitude of the above solitons, respectively,
A1 and A2 indicate the amplitudes of the same solitons. From here, it can be easily seen that
the solitons exist for τ1 > 0. Also, for τ0 = −τ1α3 and η0 = 0, the solution in Eq. (28) can be
reduced to the following Jacobi elliptic function form

u1,4 (x, t) = A3 sn− 2
n

[
±B̃ (x − κt) ,

α2 − α3

α1 − α3

]
, (32)

where A3 = (τ1 (α2 − α3))
− 1

n , B̃ =
√

α1−α3
2A .

Remark 3.1 This means that if we assign the same values to certain parameters in solutions (30)
and (31), they will match exactly with solutions (26) and (27) mentioned in Ref. [24].

Remark 3.2 In this paper, we have used the extended trial equation method to obtain so-
lutions (29)-(32) for Eq. (1). We have verified these solutions using Mathematica. To the best
of our knowledge, the rational function solution, the singular soliton solution, and the Jacobi
elliptic function solutions that we have found in this paper have not been previously shown in
the literature. These solutions represent new traveling wave solutions for Eq. (1).

Case 2. If we take ε = 0, δ = 2 and θ = 4, then

(
v′
)2

=
(τ1 + 2τ2Γ)2 (ξ0 + ξ1Γ + ξ2Γ2 + ξ3Γ3 + ξ4Γ4)

ζ0
,
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Figure 2: The solution (30) is shown at the above two or three dimensional graphs for the values
τ0 = a = b = −1, τ1 = α1 = ξ1 = ξ2 = 1, α2 = 2, n = −2, t = 1.

Figure 3: The solution (32) is shown at the above two or three dimensional graphs for the values
τ0 = a = b = −1, τ1 = α3 = ξ1 = ξ2 = 1, α1 = 3, α2 = 2, n = −2, t = 1.

v′′ =
(τ1 + 2τ2Γ)

(
ξ1 + 2ξ2Γ + 3ξ3Γ2 + 4ξ4Γ3)+ 4τ2

(
ξ0 + ξ1Γ + ξ2Γ2 + ξ3Γ3 + ξ4Γ4)

2ζ0
, (33)

where ξ4 ̸= 0, ζ0 ̸= 0. The system of the nonlinear algebraic equations, which is determined
with the help of Eq. (33) and the coefficients of the polynomial Γ, is created the calculation
codes in the Mathematica package program and the parametric solutions of this system are
found as follows:

τ0 = τ0, τ1 = τ1, τ2 = τ2, ξ0 =
aζ0τ2

0

3b
(
4τ0τ2 − τ2

1

) , ξ1 =
2aζ0τ0τ1

3b
(
4τ0τ2 − τ2

1

) , ξ2 =
aζ0
(
τ2

1 + 2τ0τ2
)

3b
(
4τ0τ2 − τ2

1

) ,

ξ3 = − 2aζ0τ1τ2

3b
(
τ2

1 − 4τ0τ2
) ξ4 = − aζ0τ2

2

3b
(
τ2

1 − 4τ0τ2
) , ζ0 = ζ0, c =

√
14aτ2

3
(
4τ0τ2 − τ2

1

) . (34)

When the coefficients written in Eq. (34) are substituted into Eqs. (6) and (11), respectively, the
following integral form is obtained

± (η − η0) =

√
3b
(
4τ0τ2 − τ2

1

)
aτ2

2

∫ 1√
Γ4 + ξ3

ξ4
Γ3 + ξ2

ξ4
Γ2 + ξ1

ξ4
Γ + ξ0

ξ4

dΓ. (35)

The following wave solutions to Eq. (1) are computed by integrating Eq. (35):

± (η − η0) = − A
Γ − α1

, (36)

± (η − η0) =
2A

α1 − α2

√
Γ − α2

Γ − α1
, (37)

± (η − η0) =
A

α1 − α2
ln
∣∣∣∣Γ − α1

Γ − α2

∣∣∣∣ , (38)

https://ejamjournal.com/
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± (η − η0) =
2A√

(α1 − α2) (α1 − α3)
ln

∣∣∣∣∣
√
(Γ − α2) (α1 − α3)−

√
(Γ − α3) (α1 − α2)√

(Γ − α2) (α1 − α3) +
√
(Γ − α3) (α1 − α2)

∣∣∣∣∣ , (39)

± (η − η0) =
2A√

(α1 − α3) (α2 − α4)
F (φ, l) , (40)

where

A =

√
3b
(
4τ0τ2 − τ2

1

)
aτ2

2
, φ = arcsin

(√
(Γ − α1) (α2 − α4)

(Γ − α2) (α1 − α4)

)
, l2 =

(α2 − α3) (α1 − α4)

(α1 − α3) (α2 − α4)
. (41)

Here, the values α1, α2, α3 and α4 are called as the roots of an algebraic equation arising from
the following 4rd degree polynomial

Γ4 +
ξ3

ξ4
Γ3 +

ξ2

ξ4
Γ2 +

ξ1

ξ4
Γ +

ξ0

ξ4
= 0. (42)

When Eqs. (36)-(40) were substituted in Eqs. (5) and (13), respectively, the rational, exponential,
hyperbolic and Jacobi elliptic function solutions are determined as follows, and for simplicity, if
we choose , then we can get the following solutions:

u2,1 (x, t) =

[
2

∑
i=0

τi

(
α1 ∓

A
x − ct

)i
]− 1

n

, (43)

u2,2 (x, t) =

 2

∑
i=0

τi

(
α1 −

4A2 (α1 − α2)

4A2 − [(α1 − α2) (x − ct)]2

)i
− 1

n

, (44)

u2,3 (x, t) =

[
2

∑
i=0

τi

(
α2 +

α2 − α1

−1 + exp [B3 (x − ct)]

)i
]− 1

n

, (45)

u2,4 (x, t) =

[
2

∑
i=0

τi

(
α1 +

α1 − α2

−1 + exp [B3 (x − ct)]

)i
]− 1

n

, (46)

u2,5 (x, t) =

[
2

∑
i=0

τi

(
α1 −

2 (α1 − α2) (α1 − α3)

2α1 − α2 − α3 + (α3 − α2) cosh [C (x − ct)]

)i
]− 1

n

, (47)

u2,6 (x, t) =

[
2

∑
i=0

τi

(
α2 +

(α1 − α2) (α4 − α2)

α4 − α2 + (α1 − α4) sn2 (χ, l)

)i
]− 1

n

, (48)

where

B3 =
α1 − α2

A
, C =

√
(α1 − α2) (α1 − α3)

2A
,

χ =

√
(α1 − α3) (α2 − α4)

2A
(x − ct) , l2 =

(α2 − α3) (α1 − α4)

(α1 − α3) (α2 − α4)
. (49)

Remark 3.3 In this paper, we have used the extended trial equation method to obtain so-
lutions (43)-(48) for Eq. (1). We have verified these solutions using Mathematica. To the best
of our knowledge, the rational function solution, the singular soliton solution, and the Jacobi
elliptic function solutions that we have found in this paper have not been previously shown in
the literature. These solutions represent new traveling wave solutions for Eq. (1).
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Figure 4: The solution (46) is shown at the above two or three dimensional graphs for the values
τ0 = τ1 = τ2 = α1 = a = b = 1, α2 = 2, n = −1, t = 1.

Figure 5: The solution (47) is shown at the above two or three dimensional graphs for the values
τ0 = τ1 = τ2 = α1 = a = b = 1, α2 = 2, α3 = 3, n = −1, t = 1.

Figure 6: The solution (48) is shown at the above two or three dimensional graphs for the values
τ0 = τ2 = α1 = a = b = 1, α2 = 1

2 , α3 = 3, τ1 = α4 = 2, n = −1, t = 1.
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4 Discussion

The solution function in the extended trial equation method was taken in rational form and a
similar method was tried to be created again, and thus, a new approach was proposed, which is
thought to be effective in researching the exact solutions of NPDEs and is expected to provide
new solution functions that are not included in the literature, and is defined in the following
steps.

Step 1. Assume that the trial function defined in Eq. (5) has the following more general form:

u =
A(Γ)
B(Γ)

=

δ

∑
i=0

τiΓi

µ

∑
j=0

ωjΓj
, (50)

where (
Γ′)2

= Λ (Γ) =
Φ (Γ)
Ψ (Γ)

=
ξθΓθ + · · ·+ ξ1Γ + ξ0

ζεΓε + · · ·+ ζ1Γ + ζ0
. (51)

Here, τi (i = 0, · · · , δ), ωj (j = 0, · · · , µ), ξϱ (ϱ = 0, · · · , θ) and ζσ (σ = 0, · · · , ε) are the
constants to be determined.

Step 2. Taking trial equations (49) and (50), we derive the following equations:

(
u′)2

=
Φ (Γ) (A′ (Γ) B (Γ)− A (Γ) B′ (Γ))2

Ψ (Γ) B4 (Γ)
, (52)

and the terms containing higher order derivatives such as u′′′, and so on.

Step 3. Substituting u′, u′′ and the higher order derivative terms into Eq. (4) we can get

Ω (Γ) = ρsΓs + · · ·+ ρ1Γ + ρ0 = 0. (53)

An important relation between the values of δ, µ, θ and ε is obtained by applying the balance
principle to this method. The values δ, µ, θ and ε required for the application of the method can
be determined by this balance relation.

Step 4. Letting the coefficients of Ω (Γ) all be zero yield a system of algebraic equations
ρi = 0 (i = 0, · · · , s). After we solve this system with the help of Mathematica, we can deter-
mine the values τi (i = 0, · · · , δ), ωj (j = 0, · · · , µ), ξϱ (ϱ = 0, · · · , θ) and ζσ (σ = 0, · · · , ε).

Step 5. If we substitute the values computed in Step 4 into Eq. (50), and then integrate Eq. (50),
we can construct the new wave solutions of Eq. (2).

5 Conclusions and Remarks

Our study focused on a variant of the Boussinesq equation, and our goal was to construct the
traveling wave solutions. To achieve this, we applied the extended trial equation method. The
Boussinesq equation, which is a well-known nonlinear partial differential equation, is widely
used to describe various wave phenomena in different fields of science. However, the variant we
consider in this paper introduces modifications to the original Boussinesq equation, rendering
traditional methods insufficient for finding exact solutions. To overcome this challenge, we
utilized the extended trial equation method, which had been proven to be effective in finding
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exact solutions for various nonlinear partial differential equations. This method involves
proposing an extended trial equation, which is a solution ansatz that encompasses the original
equation. Using this extended trial equation, we derived the corresponding traveling wave
solutions by substituting it into the variant of the Boussinesq equation. Some of them are
respectively hyperbolic, rational, elliptic and Jacobi elliptic functions. This process also led to a
system of algebraic equations that can be solved to obtain the explicit forms of the traveling
wave solutions. In order to solve this system, Mathematica software helped us. Through this
approach, we were able to obtain a family of solutions that describe the wave behavior in the
variant Boussinesq equation. Our results provide valuable insights into the wave dynamics
of the variant Boussinesq equation and contribute to the understanding of nonlinear wave
phenomena. The extended trial equation method proves to be a powerful tool for tackling
complex nonlinear partial differential equations and discovering exact solutions. Further studies
can be conducted to investigate the properties and applications of these solutions in different
scientific disciplines.
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