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Abstract

In order to generalize coupled fixed point results in the setup of partially ordered multiplicative metric
spaces, we employing the concept of w∗− compatible mappings and generalized contractive condition
and prove some coupled coincidence point and common coupled fixed points results. We also provide
illustrative examples in support of our new results. Moreover, some applications to integral equations are
presented. Our established results generalize, extend and unify various results in the existing literature.
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1 Introduction and preliminaries

Fixed point theory in metric spaces has attracted considerable attention due to numerous appli-
cations in areas such as variational and linear inequalities, optimization, and approximation
theory. In 2004, Ran and Reurings [1] investigated the existence of fixed points in partially
ordered metric spaces and then by Nieto and Lopez [2]. Further interesting results in this direc-
tion were proved (see [3–8]). Results on weak contractive mappings in such spaces, together
with applications to differential equations, were obtained by Harjani and Sadarangani in [9].

Guo and Lakshmikantham in [10] initiated the study of coupled fixed points in partially
ordered metric spaces and then attracted many researchers, see for example [11–14] and refer-
ences therein. Bhaskar and Lakshmikantham [15] introduced the notions of mixed monotone
mapping and obtained some coupled fixed point results. As an application, they studied the
existence and uniqueness of a solution for a periodic boundary value problem associated with
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a first order ordinary differential equation. Lakshmikantham and Ćirić in [16] introduced the
concepts of coupled coincidence and coupled common fixed point for nonlinear mappings in
partially ordered complete metric spaces and generalized the concept of the mixed monotone
property. Choudhury and Kundu [17] obtained coupled coincidence point results in partially
ordered metric spaces for compatible mappings. Abbas et al. [18] proved coupled coincidence
and common coupled fixed point results in cone metric spaces for w− compatible mappings. Re-
cently, Hussain et al. [19] established some coupled coincidence point results for a generalized
compatible pair of mappings.

Banach contraction principle has been generalized either by extending the domain of the
mapping or by considering a more general contractive condition on the mappings. Ozavsar
and Cevikel [20] proved an analogous of Banach contraction principle in the framework of
multiplicative metric spaces. They also studied some topological properties of the relevant mul-
tiplicative metric space. Bashirov et al. [21] studied the concept of multiplicative calculus and
proved a fundamental theorem of multiplicative calculus. They also illustrated the usefulness
of multiplicative calculus with some interesting applications. Multiplicative calculus provides
natural and straightforward way to compute the derivative of product and quotient of two
functions ([22]). It was shown that the multiplicative differential equations are more suitable
than the ordinary differential equations in investigating some problems in economics and
finance. Due to its operational simplicity and support to Newtonian calculus, it has attracted
the attention of several researchers in the recent years. Furthermore, based on the definition of
multiplicative absolute value function, they defined the multiplicative distance between two
nonnegative real numbers and between two positive square matrices. This provided the basis
for multiplicative metric spaces. Florack and Assen [23] gave applications of multiplicative
calculus in biomedical image analysis. Hxiaoju et al. [24] studied common fixed points for
weak commutative mappings on a multiplicative metric space (see also, [25]). Recently, Yamaod
and Sintunavarat [26] obtained some fixed point results for generalized contraction mappings
with cyclic (α, β)-admissible mapping in multiplicative metric spaces.
In this paper, unique common coupled fixed point results for w∗− compatible maps, which are
more general than commuting and w− compatible mappings, are obtained in partially ordered
multiplicative metric spaces, without exploiting the notion of continuity. The results presented
in this paper carry various comparable results in the existing literature (e.g. [11, 13, 15]).

By R, R+, R+
n and N, we denote the set of all real numbers, the set of all nonnegative real

numbers, the set of all n-tuples of positive real numbers and the set of all natural numbers,
respectively.

Consistent with [21] and [20], the following definitions and results will be needed in the
sequel.

Definition 1.1. [21] Let X be a nonempty set. A multiplicative metric is a mapping d : X × X →
R+ satisfying the following conditions:

(i) d(u, v) ≥ 1 for all u, v ∈ X and d(u, v) = 1 iff u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;

(iii) d(u, v) ≤ d(u, w) · d(w, v) for all u, v, w ∈ X.
The pair (X, d) is called a multiplicative metric space.

Definition 1.2. [20] The multiplicative absolute value function | · | : R+ → R+ is defined as

|x| =
{

x, if x ≥ 1;
1
x

, if x < 1.

Using the definition of multiplicative absolute value function, we can prove the following
proposition.
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Proposition 1.3. For arbitrary x, y ∈ R+, the multiplicative absolute value function | · | : R+ → R+

satisfies the following:

(1) |x| ≥ 1.
(2) 1

|x| ≤ x ≤ |x|.
(3) | 1

x | = |x|.
(4) |x| ≤ y if and only if 1

y ≤ x ≤ y.
(5) |x · y| ≤ |x||y|.

Example 1.1. [20] Let X = R+
n be the collection of all n-tuples of positive real numbers. Then

d(x, y) = | x1
y1
| · | x2

y2
| · . . . · | xn

yn
| defines a multiplicative metric on X.

Definition 1.4. [20] Let multiplicative metric space (X, d), x0 be an arbitrary point in X and ε > 1.
A multiplicative open ball B(x0, ε) of radius ε centered at x0 is the set {z ∈ X : d(z, x0) < ε}.

A sequence {xn} in multiplicative metric space (X, d) is said to be multiplicative convergent
to a point x ∈ X if for any given ε > 1, there is N ∈ N such that xn ∈ B(x, ε) for all n ≥ N. If
{xn} converges to x, we write xn → x as n → ∞.

Definition 1.5. [20] Let (X, d) be a multiplicative metric space. A sequence {xn} in X is
multiplicative convergent to x in X if and only if d(xn, x) → 1 as n → ∞.

Definition 1.6. Let (X, dX) and (Y, dY) be two multiplicative metric spaces and f : X → Y be a
map. Let x0 be arbitrary but fixed element of X. Then the map f is said to be multiplicative
continuous at x0 if and only if xn → x0 in (X, dX) implies f (xn) → f (x0) in (Y, dY) for every
multiplicative convergent sequence {xn} in X. That is, given arbitrary ε > 1, there exists δ > 1
which depend on x0 and ε such that dY( f x, f x0) < ε whenever dX(x, x0) < δ for all x ∈ X.

Definition 1.7. [20] Let (X, d) be a multiplicative metric space.

(i) A sequence {xn} in X is said to be multiplicative Cauchy sequence if for any ε > 1, there
exists N ∈ N such that d(xn, xm) < ε for all m, n ≥ N.

(ii) A multiplicative metric space (X, d) is said to be complete if every Cauchy sequence {xn}
in X is multiplicative convergent to a point x ∈ X.

Definition 1.8. [20] Let (X, d) be a multiplicative metric space. A sequence {xn} in X is
multiplicative Cauchy if and only if d(xn, xm) → 1 as n, m → ∞.

Example 1.2. Let X = C∗[a, b] be the collection of all real-valued multiplicative continuous
functions over [a, b] ⊆ R+ with the multiplicative metric d defined by

d( f , g) = sup
x∈[a,b]

| f (x)
g(x)

| for arbitrary f , g ∈ X

and |.| : R+ → R+ is a multiplicative absolute valued function defined in Definition 1.2. Then
(C∗[a, b], d) is complete.

Recall that if (X,⪯) is a partially ordered set and f : X → X is such that for x, y ∈ X, x ⪯ y
implies f (x) ⪯ f (y), then the mapping f is said to be nondecreasing. Similarly, a nonincreasing
mapping is defined.
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Definition 1.9. [16] Let (X,⪯) be a partially ordered set. A mapping F : X × X → X is said to
have a mixed monotone property with respect to g : X → X, if for any x, y ∈ X,

x1, x2 ∈ X, gx1 ⪯ gx2 implies F(x1, y) ⪯ F(x2, y),

and
y1, y2 ∈ X, gy1 ⪯ gy2 implies F(x, y2) ⪯ F(x, y1).

If we take g = IX ( an identity mapping on X ), then F is said to has the mixed monotone
property [15].

Definition 1.10. [15] An element (x, y) ∈ X × X is called a coupled fixed point of mapping
F : X × X → X if x = F(x, y) and y = F(y, x).

Definition 1.11. [18] An element (x, y) ∈ X × X is called:

(c1) a coupled coincidence point of mappings F : X × X → X and g : X → X if g(x) = F(x, y)
and g(y) = F(y, x), and the pair (gx, gy) is called coupled point of coincidence.

(c2) a common coupled fixed point of mappings F : X × X → X and g : X → X if x = g(x) =
F(x, y) and y = g(y) = F(y, x).

We denote the set of coupled coincidence points of F and g with

CC(F, g) = {(x, y) : g(x) = F(x, y) and g(y) = F(y, x)}.

Definition 1.12. [18] Mappings F : X × X → X and g : X → X are called:

(w1) w− compatible if g(F(x, y)) = F(gx, gy) whenever g(x) = F(x, y) and g(y) = F(y, x);
(w2) w∗− compatible if g(F(x, x)) = F(gx, gx) whenever g(x) = F(x, x).

Note that, every w− compatible pair of mapping F and g is also w∗− compatible. We
present an example in which of mappings are w∗− compatible but not w− compatible.

Example 1.3. Let X = R+ and F : X × X → X, g : X → X be define as

F(x, y) =


4 if (x, y) = (1, 2),
6 if (x, y) = (2, 1),
8 otherwise,

and

g(x) =


4 if x = 1,
6 if x = 2,
8 if x = 8,
10 otherwise.

Then F and g are not w− compatible because g(F(1, 2)) = g(4) = 10 ̸= 8 = F(4, 6) =
F(g(1), g(2)) whereas g(1) = 4 = F(1, 2) and g(2) = 6 = F(2, 1). However, F and g are w∗−
compatible maps, since F(x, x) = 8 = g(x) implies that g(F(x, x)) = 8 = F(gx, gx).

Definition 1.13. Let X be a nonempty set. Then (X, d,⪯) is called partially ordered multi-
plicative metric space if and only if d is a multiplicative metric on a partially ordered set
(X,⪯).

Let g be a self map on X. We define ∆g, ∆ ⊆ X × X as follows:

∆g = {(x, y, u, v) ∈ X4 : gx ⪯ gu and gy ⪰ gv}

and
∆ = {(x, y, u, v) ∈ X4 : x ⪯ u and y ⪰ v}.

Note that, if (x, y, u, v) ∈ ∆g or ∆, then (v, u, y, x) ∈ ∆g or ∆ and vice versa.
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2 Main results

Now, we start with the following result of common coupled fixed point.

Theorem 2.1. Let (X, d,⪯) be a partially ordered multiplicative metric space. Suppose that a mapping
F : X × X → X has a mixed monotone property with respect to g : X → X and

d(F(x, y), F(u, v)) ≤
(

Mg(x, y, u, v)
)λ , (1)

where

Mg(x, y, u, v) = max{d(gx, gu) · d(gy, gv), d(F(x, y), gx) · d(F(x, y), gu),
d(gy, gv) · d(F(x, y), gx), d(gy, gv) · d(F(x, y), gu)}

for all (x, y, u, v) ∈ ∆g, where λ ∈ [0, 1
2 ). If F(X × X) is contained in a complete set g(X) and X has

the property that for any two sequences {xn}, {yn} with (xn+1, yn+1, xn, yn) ∈ ∆ such that xn → x,
yn → y as n → ∞ implies that (xn, y, x, yn) ∈ ∆. Then CC(F, g) is nonempty provided that there exist
x0, y0 ∈ X such that (g(x0), g (y0) , F(x0, y0), F(y0, x0)) ∈ ∆. If CC(F, g) ⊆ ∆g, then F and g have a
unique coupled coincidence point in X. Moreover, if gy0 ⪯ gx0 with F and g are w∗− compatible, then
F and g have a common coupled fixed point.

Proof. Let x0, y0 ∈ X be such that g(x0) ⪯ F(x0, y0) and g(y0) ⪰ F(y0, x0). Set gx1 = F(x0, y0)
and gy1 = F(y0, x0), this can be done as F(X × X) ⊆ g(X). Similarly, g(x2) = F(x1, y1) and
g(y2) = F(y1, x1). Continuing this process we can construct sequences {xn} and {yn} in X such
that

g(xn+1) = F(xn, yn) and g(yn+1) = F(yn, xn) for all n ≥ 0. (2)

We shall show that g(xn) ⪯ g(xn+1) and g(yn) ⪰ g(yn+1) for all n ≥ 0.
By induction, let n = 0. Since gx0 ⪯ F(x0, y0) and gy0 ⪰ F(y0, x0) also gx1 = F(x0, y0)
and gy1 = F(y0, x0), so that gx0 ⪯ gx1 and gy0 ⪰ gy1. Now, let it holds for some fixed
n ≥ 0. Since gxn ⪯ gxn+1 and gyn ⪰ gyn+1, and as F has the mixed monotone property with
respect to g, so that gxn+1 = F(xn, yn) ⪯ F(xn+1, yn) and gyn+1 = F(yn, xn) ⪰ F(yn+1, xn).
Also gxn+2 = F(xn+1, yn+1) ⪰ F(xn+1, yn) and F(yn+1, xn) ⪰ F(yn+1, xn+1) = gyn+2. Hence
gxn+1 ⪯ gxn+2 and gyn+1 ⪰ gyn+2. Thus by the mathematical induction we conclude that for
all n ≥ 0,

gx0 ⪯ gx1 ⪯ ... ⪯ gxn ⪯ gxn+1 ⪯ ..., and
gy0 ⪰ gy1 ⪰ ... ⪰ gyn ⪰ gyn+1 ⪰ ...·

We will suppose that d(gxn, gxn+1) > 1 and d(gyn, gyn+1) > 1 for all n, since if d(gxn, gxn+1) =
1 and d(gyn, gyn+1) = 1 for some n, then gxn = gxn+1 and gyn = gyn+1. And from (2), we have

gxn = F(xn, yn) and gyn = F(yn, xn),

that is, F and g have a coupled coincidence point (xn, yn), and so we have finished the proof.
Now from (1), we have

d(gxn, gxn+1) = d(F(xn−1, yn−1), F(xn, yn))

≤ (max{d(gxn−1, gxn) · d(gyn−1, gyn),
d(F(xn−1, yn−1), gxn−1) · d(F(xn−1, yn−1), gxn),
d(gyn−1, gyn) · d(F(xn−1, yn−1), gxn−1), d(gyn−1, gyn) · d(F(xn−1, yn−1), gxn)})λ

= (max{d(gxn−1, gxn) · d(gyn−1, gyn), d(gxn, gxn−1) · d(gxn, gxn),
d(gyn−1, gyn) · d(gxn, gxn−1), d(gyn−1, gyn) · d(gxn, gxn)})λ

= (max{d(gxn−1, gxn) · d(gyn−1, gyn), d(gxn, gxn−1), d(gyn−1, gyn)})λ,
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and hence
d(gxn, gxn+1) ≤ (d(gxn−1, gxn) · d(gyn−1, gyn))

λ. (3)

Similarly,
d(gyn, gyn+1) ≤ (d(gyn−1, gyn) · d(gxn−1, gxn))

λ. (4)

From (3) and (4), we obtain

d(gxn, gxn+1) · d(gyn, gyn+1) ≤ (d(gxn−1, gxn) · d(gyn−1, gyn))
2λ

= (d(gxn−1, gxn) · d(gyn−1, gyn))
κ, (5)

where κ = 2λ. Obviously, κ < 1. Now

d(gxn, gxn+1) · d(gyn, gyn+1)

≤ (d(gxn−1, gxn) · d(gyn−1, gyn))
κ

≤ (d(gxn−2, gxn−1) · d(gyn−2, gyn−1))
κ2

≤ ...
≤ (d(gx0, gx1) · d(gy0, gy1))

κn
.

Since lim
n→∞

(d(gx0, gx1) · d(gy0, gy1))
κn

= 1. Hence

lim
n→∞

d(gxn, gxn+1) · d(gyn, gyn+1) = 1,

which implies that

lim
n→∞

d(gxn, gxn+1) = 1 and lim
n→∞

d(gyn, gyn+1) = 1. (6)

Now, for any m, n ∈ N with m > n ≥ n0, we claim that

lim
n→∞

d(gxn, gxm) = 1 (7)

and lim
n→∞

d(gyn, gym) = 1. (8)

We prove the inequality (7) by induction on m. The inequality (7) holds for m = n + 1 by using
(6). Assume that (7) holds for m = k. Since gxn ⪯ gxk and gyn ⪰ gyk, so that for m = k + 1, we
have

d(gxn, gxm) = d(gxn, gxk+1)

≤ d(gxn, gxn+1) · d(gxn+1, gxk+1)

= d(gxn, gxn+1) · d(F(xn, yn), F(xk, yk))

≤ d(gxn, gxn+1) · (max{d(gxn, gxk) · d(gyn, gyk), d(F(xn, yn), gxn) · d(F(xn, yn), gxk),
d(gyn, gyk) · d(F(xn, yn), gxn), d(gyn, gyk) · d(F(xn, yn), gxk)})λ

= d(gxn, gxn+1) · (max{d(gxn, gxk) · d(gyn, gyk), d(gxn+1, gxn) · d(gxn+1, gxk),
d(gyn, gyk) · d(gxn+1, gxn), d(gyn, gyk) · d(gxn+1, gxk)})λ.

On taking limit as n → ∞ implies that

lim
n→∞

d(gxn, gxm) = 1.

Similarly, we obtain
lim
n→∞

d(gyn, gym) = 1.

https://ejamjournal.com/
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By induction on m, we conclude that (7) and (8) hold for m > n ≥ n0. Hence {gxn} and {gyn}
are multiplicative Cauchy sequences in g(X), so there exists x and y in X such that {gxn} and
{gyn} converges to gx and gy respectively, that is,

lim
n→∞

d(gxn, gx) = 1

and
lim
n→∞

d(gyn, gy) = 1.

Now, we prove that F(x, y) = gx and F(y, x) = gy.
Since gxn ⪯ gx and gyn ⪰ gy for all n ≥ 0, so that we have

d(F(x, y), gx) ≤ d(F(x, y), gxn+1) · d(gxn+1, gx)
= d(F(xn, yn), F(x, y)) · d(gxn+1, gx)
≤ (max{d(gxn, gx) · d(gyn, gy), d(F(xn, yn), gxn) · d(F(xn, yn), gx),

d(gyn, gy) · d(F(xn, yn), gxn), d(gyn, gy) · d(F(xn, yn), gx)})λ · d(gxn+1, gx)
= (max{d(gxn, gx) · d(gyn, gy), d(gxn+1, gxn) · d(gxn+1, gx),

d(gyn, gy) · d(gxn+1, gxn), d(gyn, gy) · d(gxn+1, gx)})λ · d(gxn+1, gx).

On taking limit as n → ∞, we obtain that

d(F(x, y), gx) = 1,

and hence F(x, y) = gx. Similarly, it can be shown that F(y, x) = gy. Hence (x, y) is a coupled
coincidence point and (gx, gy) is coupled point of coincidence of mappings F and g.

Now we show that F and g have a unique coupled coincidence point. As CC(F, g) ⊆ ∆g.
Let (gx̃, gỹ) be another coupled point of coincidence of F and g such that (gx, gy) ̸= (gx̃, gỹ),
then gx ⪯ gx̃ and gy ⪰ gỹ and from (1), we have

d(gx, gx̃) = d(F(x, y), F(x̃, ỹ))
≤ (max{d(gx, gx̃) · d(gy, gỹ), d(F(x, y), gx) · d(F(x, y), gx̃),

d(gy, gỹ) · d(F(x, y), gx), d(gy, gỹ) · d(F(x, y), gx̃)})λ

= (d(gx, gx̃) · d(gy, gỹ))λ. (9)

Similarly, by using gỹ ⪯ gy and gx̃ ⪰ gx, we have

d(gy, gỹ) ≤ (d(gx, gx̃) · d(gy, gỹ))λ. (10)

Thus by multiplying above two inequalities,

d(gx, gx̃) · d(gy, gỹ) ≤ (d(gx, gx̃) · d(gy, gỹ))2λ,

a contradiction as λ < 1
2 . Thus (gx, gy) = (gx̃, gỹ).

Now, we shall show that gx = gy. If not, then since gx0 ⪰ gy0, implies gy ⪯ gyn ⪯ gy0 ⪯
gx0 ⪯ gxn ⪯ gx for all n ≥ 0. Using (1), we have

d(gy, gx) = d(F(y, x), F(x, y))
≤ (max{d(gy, gx) · d(gx, gy), d(F(y, x), gy) · d(F(y, x), gx),

d(gx, gy) · d(F(y, x), gy), d(gx, gy) · d(F(y, x), gx)})λ

= (max{d(gy, gx) · d(gx, gy), d(gy, gy) · d(gy, gx),
d(gx, gy) · d(gy, gy), d(gx, gy) · d(gy, gx)})λ

= (d(gx, gy))2λ,
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a contradiction as 2λ < 1. Hence gx = gy.
Now we show that F and g have common coupled fixed point.
For this, let g(x) = u. Then we have u = gx = F(x, x). By w∗− compatibility of F and g, we
have

g(u) = g(gx) = g(F(x, x)) = F(gx, gx) = F(u, u).

Then (gu, gu) is a coupled point of coincidence of F and g. By the uniqueness of coupled
point of coincidence, we have gu = gx. Therefore u = gu = F(u, u), and (u, u) is the common
coupled fixed point of F and g.

Following example illustrates the fact that, condition CC(F, g) ⊆ ∆g is essential to obtain
unique coupled coincidence point in X.

Example 2.1. Let X = [0, 1] be an ordered set with the natural ordering of real numbers and
d : X × X → R+ be the multiplicative metric defined by d(x, y) = e|x−y|. Let F : X × X → X
and g : X → X be defined by

F(x, y) =
{ x+y+1

6 x ≥ y,
0 x < y,

and
g(x) =

5x
6

for all x ∈ X.

Note that F(X × X) ⊆ g(X).
Now for (x, y, u, v) ∈ ∆g and 1

5 ≤ λ < 1
2 , we have

d(F(x, y), F(u, v)) = e
1
6 |x+y−u−v|

≤ e
1
6 [u−x+y−v] ≤ e

5λ
6 [u−x+y−v]

= (e
5
6 [(u−x)+(y−v)])λ = (d(gx, gu) · d(gy, gv))λ

≤ (max{d(gx, gu) · d(gy, gv), d(F(x, y), gx) · d(F(x, y), gu),
d(gy, gv) · d(F(x, y), gx), d(gy, gv) · d(F(x, y), gu)})λ.

Thus (1) is satisfied and F and g have coupled coincidence points. As ( 1
4 , 0), ( 1

3 , 1
3 ) ∈ CC(F, g)

but not in ∆g, so CC(F, g) ⊈ ∆g. Moreover, the set CC(F, g) is not singleton. □

Example 2.2. Let X = R+ be a partially ordered set with the natural ordering of real numbers
and d be a multiplicative metric space on X defined by d(x, y) = a|x−y|, where a > 1 is a real
number. Consider the mappings F : X × X → X and g : X → X defined by

F(x, y) =

 x2 − y2

8
, if x ≥ y,

0, if x < y,

g(x) =
7
8

x2 for all x ∈ X.

Note that F(X × X) is contained in a complete set g(X).
Now, for (x, y, u, v) ∈ ∆g with λ = 1

7 , we obtain

d(F(x, y), F(u, v)) = a
1
8 |x2−y2−(u2−v2)|

= a
1
8 (u2−x2+y2−v2) = a

7λ
8 (u2−x2+y2−v2)

= (a
7
8 |x2−u2| · a

7
8 |y2−v2|)λ = (d(gx, gu) · d(gy, gv))λ

≤ (max{d(gx, gu) · d(gy, gv), d(F(x, y), gx) · d(F(x, y), gu)
d(gy, gv) · d(F(x, y), gx), d(gy, gv) · d(F(x, y), gu)})λ.

https://ejamjournal.com/
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Thus mappings F and g satisfy all the conditions of Theorem 2.1. Moreover (0, 0) is the unique
common coupled fixed point of F and g. □

Corollary 2.2. Let (X, d,⪯) be a partially ordered multiplicative metric space. Suppose that a mapping
F : X × X → X has a mixed monotone property with respect to g : X → X and

d(F(x, y), F(u, v)) ≤ (d(gx, gu) · d(gy, gv))k (11)

for all (x, y, u, v) ∈ ∆g, where k ∈ [0, 1
2 ). If F(X × X) is contained in a complete set g(X) and X has

the following property:

i. if a non-decreasing sequence {xn} → x, then xn ⪯ x for all n,
ii. if a non-increasing sequence {yn} → y, then y ⪯ yn for all n.

Then CC(F, g) is nonempty provided that there exist x0, y0 ∈ X such that

g(x0) ⪯ F(x0, y0) and g(y0) ⪰ F(y0, x0).

If the set CC(F, g) is contained in ∆g, then F and g have a unique coupled coincidence point in X.
Moreover, if gy0 ⪯ gx0 with F and g are w∗− compatible, then F and g have a common coupled fixed
point.

Corollary 2.3. Let (X, d,⪯) be a partially ordered multiplicative metric space. Suppose that a mapping
F : X × X → X has the mixed monotone property and

d(F(x, y), F(u, v))
≤ (max{d(x, u) · d(y, v), d(F(x, y), x) · d(F(x, y), u),

d(y, v) · d(F(x, y), x), d(y, v) · d(F(x, y), u)})λ (12)

for all (x, y, u, v) ∈ ∆g with λ ∈ [0, 1
2 ). If X is a complete with following property:

i. if a non-decreasing sequence {xn} → x, then xn ⪯ x for all n,
ii. if a non-increasing sequence {yn} → y, then y ⪯ yn for all n.

Then F has a coupled fixed point in X provided that there exist x0, y0 ∈ X such that

x0 ⪯ F(x0, y0) and y0 ⪰ F(y0, x0).

If the set of coupled fixed point of F is contained in ∆, then F has a unique coupled fixed point in X.

Proof. The results follows by taking g = I (identity mapping) in Theorem 2.1.

Corollary 2.4. Let (X, d,⪯) be a partially ordered multiplicative metric space. Suppose that a mapping
F : X × X → X has the mixed monotone property and

d(F(x, y), F(u, v)) ≤ (d(x, u) · d(y, v))λ (13)

for all (x, y, u, v) ∈ ∆ with λ ∈ [0, 1
2 ). If X is complete and has a property that for any two sequences

{xn}, {yn} with (xn+1, yn+1, xn, yn) ∈ ∆ such that xn → x, yn → y as n → ∞ implies that
(xn, y, x, yn) ∈ ∆. Then F has a fixed point in X provided that there exist x0, y0 ∈ X such that
(x0, y0, F(x0, y0), F(y0, x0)) ∈ ∆.
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Theorem 2.5. Let (X, d,⪯) be a partially ordered multiplicative metric space. Suppose that a mapping
F : X × X → X has a mixed monotone property with respect to g : X → X and

d(F(x, y), F(u, v))
≤ d(gx, gu)k1 · d(gy, gv)k2 · d(F(x, y), gx)k3

·d(F(u, v), gu)k4 · d(F(x, y), gu)k5 (14)

for all (x, y, u, v) ∈ ∆g, with nonnegative real numbers ki, i = 1, 2, ..., 5 and
5
∑

i=1
ki < 1. If F(X × X) is

contained in a complete set g(X) and X has the property that for any two sequences {xn}, {yn} with
(xn+1, yn+1, xn, yn) ∈ ∆ such that xn → x, yn → y as n → ∞ implies that (xn, y, x, yn) ∈ ∆. Then
CC(F, g) is nonempty provided that there exist x0, y0 ∈ X such that (g(x0), g (y0) , F(x0, y0), F(y0, x0)) ∈
∆. If CC(F, g) ⊆ ∆g, then F and g have a unique coupled coincidence point in X. Moreover, if gy0 ⪯ gx0
with F and g are w∗− compatible, then F and g have a common coupled fixed point.

Proof. Let x0, y0 ∈ X be such that g(x0) ⪯ F(x0, y0) and g(y0) ⪰ F(y0, x0). Using the similar
arguments to those given in Theorem 2.1, we construct sequences {xn} and {yn} in X such that

g(xn+1) = F(xn, yn) and g(yn+1) = F(yn, xn) for all n ≥ 0,

and for all n ≥ 0,

gx0 ⪯ gx1 ⪯ ... ⪯ gxn ⪯ gxn+1 ⪯ ..., and
gy0 ⪰ gy1 ⪰ ... ⪰ gyn ⪰ gyn+1 ⪰ ....

Now we will suppose that d(gxn, gxn+1) > 1 and d(gyn, gyn+1) > 1 for all n, otherwise, F and
g have a coupled coincidence point at (xn, yn), and so we have finished the proof. From (14),
we have

d(gxn, gxn+1)

= d(F(xn−1, yn−1), F(xn, yn))

≤ d(gxn−1, gxn)
k1 · d(gyn−1, gyn)

k2 · d(F(xn−1, yn−1), gxn−1)
k3

·d(F(xn, yn), gxn)
k4 · d(F(xn−1, yn−1), gxn)

k5

= d(gxn−1, gxn)
k1 · d(gyn−1, gyn)

k2 · d(gxn, gxn−1)
k3

·d(gxn+1, gxn)
k4 · d(gxn, gxn)

k5

= d(gxn−1, gxn)
k1+k3 · d(gyn−1, gyn)

k2 · d(gxn+1, gxn)
k4 ,

from which it follows

d(gxn, gxn+1)
1−k4 ≤ d(gxn−1, gxn)

k1+k3 · d(gyn−1, gyn)
k2 . (15)

Similarly,
d(gyn, gyn+1)

1−k4 ≤ d(gyn−1, gyn)
k1+k3 · d(gxn−1, gxn)

k2 . (16)

From (15) and (16), we obtain

(d(gxn, gxn+1) · d(gyn, gyn+1))
1−k4

≤ (d(gyn−1, gyn) · d(gxn−1, gxn))
k1+k2+k3 ,

that is
d(gxn, gxn+1) · d(gyn, gyn+1) ≤ [d(gxn−1, gxn) · d(gyn−1, gyn)]

λ, (17)

https://ejamjournal.com/


Existence of Common Coupled Fixed Points Z. Zhao and T. Nazir | 11

where λ =
k1 + k2 + k3

1 − k4
. Obviously, 0 ≤ λ < 1. Now

d(gxn, gxn+1) · d(gyn, gyn+1) ≤ [d(gxn−1, gxn) · d(gyn−1, gyn)]
λ

≤ [d(gxn−2, gxn−1) · d(gyn−2, gyn−1)]
λ2

≤ ...
≤ [d(gx0, gx1) · d(gy0, gy1)]

λn
.

Then, for all n, m ∈ N, m > n, we have

d(gxn, gxm) · d(gyn, gym) ≤ d(gxn, gxn+1) · d(gxn+1, gxx+2) · ... · d(gxm−1, gxm)

·d(gyn, gyn+1) · d(gyn+1, gyx+2) · ... · d(gym−1, gym)

= d(gxn, gxn+1) · d(gyn, gyn+1) · d(gxn+1, gxx+2)

·d(gyn+1, gyx+2) · ... · d(gxm−1, gxm) · d(gym−1, gym)

≤ [d(gx0, gx1) · d(gy0, gy1)]
λn

1−λ ,

which implies that lim
n,m→∞

[d(gxn, gxm) · d(gyn, gym)] = 1. Hence lim
n,m→∞

d(gxn, gxm) = 1 and

lim
n,m→∞

d(gyn, gym) = 1. Hence {gxn} and {gyn} are multiplicative Cauchy sequences in g(X),

so there exists x and y in X such that {gxn} and {gyn} converges to gx and gy respectively.
Now, we prove that F(x, y) = gx and F(y, x) = gy.
Now since gxn ⪯ gx and gyn ⪰ gy for all n ≥ 0, so that we have

d(F(x, y), gx)
≤ d(F(x, y), gxn+1) · d(gxn+1, gx)
= d(F(xn, yn), F(x, y)) · d(gxn+1, gx)
≤ d(gxn, gxn)

k1 · d(gyn, gyn)
k2 · d(F(xn, yn), gxn)

k3 · d(F(x, y), gx)k4

·d(F(xn, yn), gx)k5 · d(gxn+1, gx)
= d(gxn+1, gxn)

k3 · d(F(x, y), gx)k4 · d(gxn+1, gx)k5 · d(gxn+1, gx).

On taking the limit as n → ∞, we obtain that

d(F(x, y), gx) ≤ d(F(x, y), gx)k4 .

Since k4 < 1, so that F(x, y) = gx. Similarly, it can be shown that F(y, x) = gy. Hence (x, y) is a
coupled coincidence point and (gx, gy) is coupled point of coincidence of mappings F and g.

Now we show that F and g have a unique coupled coincidence point. As CC(F, g) ⊆ ∆g, so
that, if (gx̃, gỹ) be another coupled point of coincidence of F and g such that (gx, gy) ̸= (gx̃, gỹ),
then gx ⪯ gx̃ and gy ⪰ gỹ and from (14), we have

d(gx, gx̃)
= d(F(x, y), F(x̃, ỹ))
≤ d(gx, gx̃)k1 · d(gy, gỹ)k2 · d(F(x, y), gx)k3

·d(F(x̃, ỹ), gx̃)k4 · d(F(x, y), gx̃)k5

= d(gx, gx̃)k1+k5 · d(gy, gỹ)k2 . (18)

Similarly, by using gỹ ⪯ gy and gx̃ ⪰ gx, we have

d(gy, gỹ) ≤ d(gy, gỹ)k1+k5 · d(gx, gx̃)k2 . (19)
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Thus by multiplying above two inequalities,

d(gx, gx̃) · d(gy, gỹ) ≤ (d(gx, gx̃) · d(gy, gỹ))k1+k2+k5 ,

a contradiction as k1 + k2 + k5 < 1. Thus (gx, gy) = (gx̃, gỹ), that is, (gx, gy) is the unique
couple coincidence point of F and g.
Now, we shall show that gx = gy. Since gx0 ⪰ gy0, implies gy ⪯ gyn ⪯ gy0 ⪯ gx0 ⪯ gxn ⪯ gx
for all n ≥ 0. Using (14), we have

d(gy, gx)
= d(F(y, x), F(x, y))
≤ d(gy, gx)k1 · d(gx, gy)k2 · d(F(y, x), gy)k3

·d(F(x, y), gx)k4 · d(F(y, x), gx)k5

= d(gx, gy)k1+k2+k5 ,

implies gx = gy.
Now we show that F and g have common coupled fixed point.
For this, let g(x) = u. Then we have u = gx = F(x, x). By w∗− compatibility of F and g, we
have

g(u) = g(gx) = g(F(x, x)) = F(gx, gx) = F(u, u).

Then (gu, gu) is a coupled point of coincidence of F and g. By the uniqueness of coupled
point of coincidence, we have gu = gx. Therefore u = gu = F(u, u), and (u, u) is the common
coupled fixed point of F and g.

Corollary 2.6. Let (X, d,⪯) be a partially ordered set and d a multiplicative metric on X. Suppose that
a mapping F : X × X → X has a mixed monotone property with respect to g : X → X and

d(F(x, y), F(u, v)) ≤ d(F(x, y), gx)k · d(F(u, v), gu)l (20)

for all (x, y, u, v) ∈ ∆g and k, l ≥ 0 with k + l < 1. If F(X × X) is contained in a complete set g(X)
and X has the property that for any two sequences {xn}, {yn} with (xn+1, yn+1, xn, yn) ∈ ∆ such that
xn → x, yn → y as n → ∞ implies that (xn, y, x, yn) ∈ ∆. Then CC(F, g) is nonempty provided that
there exist x0, y0 ∈ X such that (g(x0), g (y0) , F(x0, y0), F(y0, x0)) ∈ ∆. If CC(F, g) ⊆ ∆g, then F
and g have a unique coupled coincidence point in X. Moreover, if gy0 ⪯ gx0 with F and g are w∗−
compatible, then F and g have a common coupled fixed point.

3 Application.

Let Ω = [0, T] be a bounded set in R, where T > 0 and X = C (Ω, R) denote the space of real
valued continuous functions on Ω. Consider the integral equations

x(t) =
∫
Ω

q(t, x (s) , y(s))ds + k(t);

y(t) =
∫
Ω

q(t, y (s) , x(s))ds + k(t), (21)

where q : Ω × R × R → R and k : Ω → R be given continuous mappings.
We shall study sufficient condition for existence of solution of integral equations (21) in

framework of multiplicative metric spaces. Define d : X × X → [1, ∞) by

d(x, y) = e
sup
t∈Ω

|x(t)−y(t)|
.

https://ejamjournal.com/
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Then (X, d) is a complete multiplicative metric space. We endow X with the partial ordered ⪯
given by: x, y ∈ X, x ⪯ y ⇔ x(t) ≤ y (t), for all t ∈ Ω. Suppose that for all x, y, u, v ∈ R with
x ≤ u and y ≥ v, we have

0 ≤ q(t, x, y)− q(t, u, v) ≤ λ

T
(x − y − u + v),

for each t ∈ Ω, where λ ∈ [0,
1
2
).

Then the integral equations (21) have a solution in L2(Ω).

Proof. Define F (x, y) (t) =
∫
Ω

q(t, x (s) , y(s))ds + k(t) for x, y ∈ X and t ∈ Ω. For all x, y ∈

C (Ω, R),

d(F(x, y), F(u, v)) = e
sup
t∈Ω

|F(x,y)(t)−F(u,v)(t)|

= e
sup
t∈Ω

|
∫
Ω

q(t,x(s),y(s))ds−
∫
Ω

q(t,u(s),v(s))ds|

≤ e
sup
t∈Ω

∫
Ω
|q(t,x(s),y(s))−q(t,u(s),v(s))|ds

≤ e
λ
T

∫
Ω
[sup

t∈Ω
|x(t)−u(t)|+sup

t∈Ω
|y(t)−v(t)|]ds

= e
λ [sup

t∈Ω
|x(t)−u(t)|+sup

t∈Ω
|y(t)−v(t)|]

= (d(x, u) · d(y, v))λ

≤ (M(x, y, u, v))λ ,

where

M(x, y, u, v) = max{d(x, u) · d(y, v), d(F(x, y), x) · d(F(x, y), u),
d(y, v) · d(F(x, y), x), d(y, v) · d(F(x, y), u)}

for λ ∈ [0, 1
2 ). Thus (1) is satisfied. Moreover, it is easy to see that there exists (x0, y0) ∈

C (Ω, R)×C (Ω, R) such that (x0, y0, F (x0, y0) , (y0, x0)) ∈ ∆. Thus all the condition of Theoerm
2.1 are satisfied with g = I. Therefore we apply Theorem 2.1 and get the the solution (x̃, ỹ) ∈
C (Ω, R)× C (Ω, R) of integral equations (21).

4 Conclusions and Remarks

In this paper, we used the concept of w∗− compatible mappings and obtained several common
coupled fixed point results of mappings in the setup of partially ordered multiplicative metric
spaces. It is worth mentioning that these results are based on without exploiting the notion
of continuity of mappings. We prsented some examples that shown the validitity of obtained
results. As an application of these results, we presented the existence of solution of integral
equations in framework of multiplicative metric spaces. These established results generalize,
extend and unify various results in the existing literature.
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