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Abstract

In this study, the extended trial equation method based on the general form of nonlinear elliptic ordinary
differential equation is employed to solve the nonlinear generalized sine-Gordon equations. By the using
of this method, we achieve unlike new types of exact wave solutions such as Elliptic-F, Elliptic-E and
Elliptic-Π functions that are known as elliptic integrals.

Key words: trial equation method, elliptic function solution, soliton solution
2020 Mathematics Subject Classification: 35C07, 35C08, 35Q51
Article history: Received 9 Aug 2023; Revised 2 Sep 2023; Accepted 3 Sep 2023; Online 9 Sep 2023

1 Introduction

Recently, the study of nonlinear evolution equations with respect to the mathematical modeling
of various physical phenomena has become very important in some physical and engineering
applications such as water waves [1], plasma physics [2], nonlinear optics [3], and so on.
Various methods [4–16] have been applied to construct the optical soliton solutions to nonlinear
differential equations. Examples of some methods that have been used so far are the inverse
scattering method, similarity transformation, generalized Jacob elliptic function expansion
method, exp-function method, extended F-expansion method, different versions of (G′/G)-
expansion method, Kudryashov’s method, ansatz method, and the others. Bright optical soliton,
dark optical soliton, compactons, singular solitons, doubly-periodic solutions, and other optical
solutions have been discovered by use of the above-mentioned methods [4–16]. The optical
soliton solutions are very significant and seem in assorted areas of physics, engineering, and
applied sciences. Optical solitons are a type of nonlinear wave that provides long-range, high-
capacity, and lossless transmission. Therefore, when examined from a physical perspective,
they are a special type of soliton, waves that propagate without distortion throughout the
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propagation dimension. Therefore, it is important to investigate optical soliton solutions of
nonlinear evolution equations.

In the recent past, Liu defined the trial equation method in that the elliptic differential
equations and the complete discrimination system for polynomials are used [17]. Then, a new
version of the trial equation method for the nonlinear problems with rank inhomogeneous is
introduced by Liu [18]. A new trial equation method, which is more general than the previous
trial equation methods, is proposed in Ref. [19]. Also, Du developed an irrational trial equation
method and hence applied this interesting approach to some nonlinear physical problems
[20]. A dissimilar trial equation method according to the symmetric features of the differential
equation is offered to attain optical soliton solutions to nonlinear differential equations [21].
Apart from these, Pandir et al. constructed the extended trial equation method and tested this
powerful method in [22]. The extended trial equation method has many advantages over other
trial equation methods. With this method, it is possible to find the rational function solution,
the optical singular soliton solution, and the Jacobi elliptic function solutions at the same time.
On the other hand, the utility of these methods is illustrated by some applications [23–29].

Our goal in this paper is to investigate the extended trial equation method for the optical
soliton solutions to the sine-Gordon equation [30–33]

uxt = sin(nu), (1)

where the spatial coordinate x and the temporal coordinate t are the independent variables, u is
the dependent variable. Using the transformation

u(x, t) = u
(

ax +
t
a

, ax − t
a

)
, a > 0, (2)

we can reduce Eq. (1) to the alternative form

utt − uxx + sin(nu) = 0. (3)

The sine-Gordon equation is one of the most important equations in many scientific fields such
as the propagation of fluxons in Josephson junctions among two superconductors, the motion of
grid pendula attached to a stretched wire, solid state physics, nonlinear optics, and dislocations
in metals. In the literature, there have been several species of solutions, including the one-
soliton solution, two-soliton solutions, soliton-antisoliton collision, and the breather solution
for sine-Gordon equation [33–35]. In this paper, we give the classification of the traveling wave
solutions to Eq. (3) for n = 1 and n = 2, respectively. Thus, we attain some new optical soliton
solutions such as singular optical solutions, elliptic integral functions F, E, Π, and Jacobi elliptic
function solutions.

2 The extended trial equation method

Step 1. We consider a general form of nonlinear differential equation

P(u, ut, ux, uxx, . . . ) = 0. (4)

Under a general form of the wave transformation

u(x1, x2, . . . , xN , t) = u(η), η = λ

(
N

∑
j=1

xj − ct

)

, where λ ̸= 0 and c ̸= 0, Eq. (4) becomes

N(u, u′, u′′, . . .) = 0. (5)
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Step 2. From Ref. [6], the general solutions of Eq. (5) are given as

u =
δ

∑
i=0

τiΘi, (6)

where

(Θ′)2 = Λ(Θ) =
Φ(Θ)

Ψ(Θ)
=

ξθΘθ + · · ·+ ξ1Θ + ξ0

ζϵΘϵ + · · ·+ ζ1Θ + ζ0
. (7)

From Eqs. (6) and (7), we find the following relations

(u′)2 =
Φ(Θ)

Ψ(Θ)

(
δ

∑
i=0

iτiΘi−1

)2

, (8)

u′′ = Φ′(Θ)Ψ(Θ)−Φ(Θ)Ψ′(Θ)
2Ψ2(Θ)

(
∑δ

i=0 iτiΘi−1
)
+ Φ(Θ)

Ψ(Θ)

(
∑δ

i=0 i(i − 1)τiΘi−2
)

, (9)

where Φ(Θ) and Ψ(Θ) are polynomials. Substituting Eqs. (8) and (9) into Eq. (5), we obtain an
algebraic equation of polynomial Ω(Θ) of Θ :

Ω(Θ) = ϱsΘs + · · ·+ ϱ1Θ + ϱ0 = 0. (10)

A balancing process is applied between the term with the highest order derivative and the
term with the highest nonlinearity in Eq. (5). In accordance with the balance principle, we
can examine a mathematical relation for θ, ϵ, and δ, and then identify some values of these
variables.
Step 3. If the coefficients of Ω(Θ) is equal to zero, we build a system of algebraic equations

ϱi = 0, i = 0, . . . , s. (11)

The values of ξ0, . . . , ξθ , ζ0, . . . , ζϵ and τ0, . . . , τδ can be identified by solving this system alge-
braically.
Step 4. Eq. (7) can be converted to the following equation by integrating it once:

±(η − η0) =
∫ dΘ√

Λ(Θ)
=
∫ √Ψ(Θ)

Φ(Θ)
dΘ. (12)

Utilization the roots of Φ(Θ), we resolve Eq. (12) by aid of Mathematica software program and
categorize the exact approximate solutions to Eq. (4), respectively.

3 Applications to the extended trial equation method

In this section we consider the generalized sine-Gordon equation. In order to apply extended
trial equation method, we put forth the transformations

v = eiu (13)

and therefore

sin u =
v2 − 1

2iv
, cos u =

v2 + 1
2v

, (14)

and also gives

u = arccos
[

v2 + 1
2v

]
. (15)
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Applying this transformation to the generalized sine-Gordon equation, then we have a form

2vvtt − 2vvxx − 2v2
t + 2v2

x + vn+2 − v−n+2 = 0. (16)

In order to demonstrate for traveling wave solutions of Eq. (16), we take the transformation
v(x, t) = V(η), η = x − ct, where c as the wave speed. Therefore it can be converted to the
ODE

2(c2 − 1)VV ′′ − 2(c2 − 1)(V ′)2 + Vn+2 − V−n+2 = 0, (17)

where prime denotes the derivative with respect to η. To identify the parameter n we usually
balance the linear terms of the highest order in Eq. (17) with the highest order nonlinear terms.

i) If we take n = 1, then Eq. (3) becomes

utt − uxx + sin u = 0. (18)

When we take n = 1, then Eq. (17) becomes as follows

2(c2 − 1)VV ′′ + 2(1 − c2)(V ′)2 + V3 − V = 0, (19)

where prime demonstrates the derivative in accordance with η. Balancing process is applied
between the highest order derivative term VV ′′ and the term with the highest nonlinearity V3

in Eq. (19). Substituting Eqs. (6) and (7) into Eq. (19) and using balance principle gives

θ = ϵ + δ + 2.

After this solution method, we acheive the results as follows:
Case 1
If we receive ϵ = 0, δ = 1 and θ = 3, then

(v′)2 =
(τ1)

2(ξ3Θ3 + ξ2Θ2 + ξ1Θ + ξ0)

ζ0
, (20)

v′′ =
τ1(3ξ3Θ2 + 2ξ2Θ + ξ1)

2ζ0
, (21)

where ξ3 ̸= 0, ζ0 ̸= 0. Serially, solving the algebraic equation system (11) gives

ξ0 =
τ0
(
ξ1τ2

1 − ξ3(τ2
0 − 1)

)
2τ3

1
, ξ1 = ξ1, ξ2 =

ξ3
(
3τ2

0 − 1
)
+ ξ1τ2

1
2τ0τ1

,

ξ3 = ξ3, τ0 = τ0, τ1 = τ1, ζ0 = ζ0, c = ±

√
ξ3 − ζ0τ1

ξ3
. (22)

Substituting these consequences into Eqs. (6) and (12), we get

±(η − η0) =

√
ζ0

ξ3

∫ dΘ√
Θ3 +

(3τ2
0 −1)+ξ1τ2

1
2τ0τ1

Θ2 + ξ1
ξ3

Θ +
τ0(ξ1τ2

1 −ξ3(τ2
0 −1))

2ξ3τ3
1

. (23)

Integrating Eq. (23), we acquire the solutions to the Eq. (18) as follows:

±(η − η0) = − 2A√
Θ − α1

, (24)
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±(η − η0) =
2A√

α2 − α1
arctan

√
Θ − α2

α2 − α1
, α2 > α1, (25)

±(η − η0) =
A√

α1 − α2
ln
∣∣∣∣√Θ − α2 −

√
α1 − α2√

Θ − α2 +
√

α1 − α2

∣∣∣∣ , α1 > α2, (26)

±(η − η0) =
2A√

α1 − α3
F(φ, l), α1 > α2 > α3, (27)

where

A =

√
ζ0

ξ3
, F(φ, l) =

∫ φ

0

dψ√
1 − l2 sin2 ψ

, (28)

and

φ = arcsin

√
Θ − α3

α2 − α3
, l2 =

α2 − α3

α1 − α3
. (29)

Also α1, α2, and α3 are the roots of the polynomial equation

Θ3 +
ξ2

ξ3
Θ2 +

ξ1

ξ3
Θ +

ξ0

ξ3
= 0. (30)

Substituting the solutions (24)-(27) into (6) and (15), we obtain

u(x, t) = arccos


1
2

τ0 + τ1α1 + τ1
4A2(

x±
√

ξ3−ζ0τ1
ξ3

t−η0

)
2

+ 1

τ0 + τ1α1 + τ1
4A2(

x±
√

ξ3−ζ0τ1
ξ3

t−η0

)


, (31)

u(x, t) = arccos


(

ς + τ1(α2 − α1) tanh2
(√

α1−α2
A η

))2
+ 1

2
(

ς + τ1(α2 − α1) tanh2
(√

α1−α2
A η

))
 , (32)

u(x, t) = arccos


(

ς + τ1(α1 − α2)cosech2
(√

α1−α2
A η

))2
+ 1

2
(

ς + τ1(α1 − α2)cosech2
(√

α1−α2
A η

))
 , (33)

u(x, t) = arccos

1
2

(
ϱ + τ1(α2 − α3)sn2

(
±

√
α1−α3

A η, l2
))2

+ 1

ϱ + τ1(α2 − α3)sn2
(
±

√
α1−α3

A η, l2
)

 , (34)

where η =
(

x ±
√

ξ3−ζ0τ1
ξ3

t − η0

)
, ς = τ0 + τ1α1, ϱ = τ0 + τ1α3 and l2 = α2−α3

α1−α3
.

Remark 1. The optical soliton solutions (31)-(34) acquired by use of the extended trial equa-
tion method for Eq. (18) have been checked up on Mathematica software program. According
to our determination, the rational function solution, the optical singular soliton solution and
the Jacobi elliptic function solutions, that we obtain in this paper, are not demonstrated in the
previous literature. These results are new optical solutions of Eq. (18).

Case 2
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Figure 1: Optical solution of Eq.(3.19) is demonstrated at τ0 = 1
2 , τ1 = 1, α1 = 1

2 , ζ0 = 1, η0 = 0,
ξ3 = 2 with imajinary and real parts respectively.

Figure 2: The graphs indicate the approximate solution of Eq. (3.19) for t = 1.

Figure 3: Optical solution of Eq.(3.20) is demonstrated at τ0 = 1
2 , τ1 = 1, α1 = 1

2 , α2 = 1, ζ0 = 1,
η0 = 0, ξ3 = 2 and second graph indicates the approximate solution for t = 1.

Figure 4: Optical solution of Eq.(3.21) is demonstrated at τ0 = 1
2 , τ1 = 1

2 , α1 = 1, α2 = 1
2 , ζ0 = 1,

η0 = 0, ξ3 = 2 and second graph indicates the approximate solution for t = 1.

Figure 5: Optical solution of Eq.(3.22) is demonstrated at τ0 = 1
2 , τ1 = 1, α1 = 1

2 , α2 = 1, ζ0 = 1,
η0 = 0, ξ3 = 2 and second graph indicates the approximate solution for t = 1.

https://ejamjournal.com/


Optical soliton solutions Yusuf Pandir and Humaira Yasmin | 77

If we get ϵ = 0, δ = 2 and θ = 4, then

(v′)2 =
(τ1 + 2τ2Θ)2(ξ4Θ4 + ξ3Θ3 + ξ2Θ2 + ξ1Θ + ξ0)

ζ0
, (35)

v′′ = (τ1+2τ1Θ)(4ξ4Θ3+3ξ3Θ2+2ξ2Θ+ξ1)
2ζ0

+ 2τ2(ξ4Θ4+ξ3Θ3+ξ2Θ2+ξ1Θ+ξ0)
ζ0

, (36)

where ξ4 ̸= 0, ζ0 ̸= 0. Respectively, solving the algebraic equation system (11) yields as follows:

ξ0 =
8ξ2τ3

1 τ2 + ξ3
(
16τ2

2 − 5τ4
1

)
32τ1τ3

2
, ξ1 = −τ1 (ξ3τ1 − 2ξ2τ2)

2τ2
2

, ξ2 = ξ2, ξ3 = ξ3,

ξ4 =
ξ3τ2

2τ1
, ζ0 = ζ0, τ0 =

τ2
1

4τ2
, τ1 = τ1, τ2 = τ2, c = ±

√
2ξ3 − ζ0τ1

2ξ3
. (37)

Substituting these consequences into Eqs. (6) and (12), we acquire

±(η − η0) =
√

2ζ0τ1
ξ3τ2

∫ dΘ√
Θ4+

2τ1
τ2

Θ3+
2ξ2τ1
ξ3τ2

Θ2− τ2
1 (ξ3τ1−2ξ2τ2)

ξ3τ3
2

Θ+
8ξ2τ3

1 τ2+ξ3(16τ2
2 −5τ4

1)
16ξ3τ4

2

. (38)

Integrating Eq. (38), we get the solutions to the Eq. (18) as follows:

±(η − η0) = − A
Θ − α1

, (39)

±(η − η0) =
2A

α1 − α2

√
Θ − α2

Θ − α1
, α1 > α2, (40)

±(η − η0) =
A

α1 − α2
ln
∣∣∣∣Θ − α1

Θ − α2

∣∣∣∣ , (41)

±(η − η0) =
2A√

(α1−α2)(α1−α3)
ln
∣∣∣∣√(Θ−α2)(α1−α3)−

√
(Θ−α3)(α1−α2)√

(Θ−α2)(α1−α3)+
√

(Θ−α3)(α1−α2)

∣∣∣∣ , α1 > α2 > α3, (42)

±(η − η0) =
2A√

(α1 − α3)(α2 − α4)
F(φ, l), α1 > α2 > α3 > α4, (43)

where

A =
√

2ζ0τ1
ξ3τ2

, φ = arcsin
√

(Θ−α1)(α2−α4)
(Θ−α2)(α1−α4)

, l2 = (α2−α3)(α1−α4)
(α1−α3)(α2−α4)

. (44)

Also α1, α2, α3 and α4 are the roots of the polynomial equation

Θ4 +
ξ3

ξ4
Θ3 +

ξ2

ξ4
Θ2 +

ξ1

ξ4
Θ +

ξ0

ξ4
= 0. (45)

Replacing the optical solutions (39)-(43) into (6) and (15), we get

u(x, t) = arccos

 1
2

τ0+τ1α1±
τ1 A

x±
√

2ξ3−ζ0τ1
2ξ3

t−η0

+τ2

α1± A

x±
√

2ξ3−ζ0τ1
2ξ3

t−η0

2


2

+1

τ0+τ1α1±
τ1 A

x±
√

2ξ3−ζ0τ1
2ξ3

t−η0

+τ2

α1± A

x±
√

2ξ3−ζ0τ1
2ξ3

t−η0

2

 , (46)
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Figure 6: Optical solution of Eq.(3.44) is demonstrated at τ0 = 1
2 , τ1 = 1, τ2 = 1, α1 = 1

2 , ζ0 = 1,
η0 = 0, ξ3 = 2 and second graph indicates the approximate solution for t = 1.

u(x, t) = arccos

 1
2

(
τ0+τ1α1+

4A2(α2−α1)τ1
4A2−((α1−α2)η)

2 +τ2

(
α1+

4A2(α2−α1)

4A2−((α1−α2)η)
2

)2
)2

+1

τ0+τ1α1+
4A2(α2−α1)τ1

4A2−((α1−α2)η)
2 +τ2

(
α1+

4A2(α2−α1)

4A2−((α1−α2)η)
2

)2

 , (47)

u(x, t) = arccos

 1
2

τ0+τ1α2+
(α2−α1)τ1

exp( α1−α2
A η)−1

+τ2

(
α2+

(α2−α1)

exp( α1−α2
A η)−1

)2
2

+1

τ0+τ1α2+
(α2−α1)τ1

exp( α1−α2
A η)−1

+τ2

(
α2+

(α2−α1)

exp( α1−α2
A η)−1

)2

 , (48)

u(x, t) = arccos

 1
2

τ0+τ1α1+
(α1−α2)τ1

exp( α1−α2
A η)−1

+τ2

(
α1+

(α1−α2)

exp( α1−α2
A η)−1

)2
2

+1

τ0+τ1α1+
(α1−α2)τ1

exp( α1−α2
A η)−1

+τ2

(
α1+

(α1−α2)

exp( α1−α2
A η)−1

)2

 , (49)

u(x, t) = arccos

 1
2

(
τ0+τ1α1−

Ãτ1
B+(α3−α2) cosh(Cη)

+τ2

(
α1− Ã

B+(α3−α2) cosh(Cη)

)2
)2

+1

τ0+τ1α1−
Ãτ1

B+(α3−α2) cosh(Cη)
+τ2

(
α1− Ã

B+(α3−α2) cosh(Cη)

)2

 , (50)

where Ã = 2(α1 − α2)(α1 − α3), B = 2α1 − α2 − α3, C =

√
(α1−α2)(α1−α3)

2A , η = x ±
√

2ξ3−ζ0τ1
2ξ3

t −
η0.

u(x, t) = arccos

 1
2

(
τ0+τ1α2+

Dτ1
Esn2(φ,l2)+α4−α2

+τ2

(
α2+

Dτ1
Esn2(φ,l2)+α4−α2

)2
)2

+1

τ0+τ1α2+
Dτ1

Esn2(φ,l2)+α4−α2
+τ2

(
α2+

Dτ1
Esn2(φ,l2)+α4−α2

)2

 , (51)

where
D = (α1 − α2)(α4 − α2), E = α1 − α4,

and

φ =

√
(α1−α3)(α2−α4)

2A

(
x ±

√
2ξ3−ζ0τ1

2ξ3
t − η0

)
, l2 = (α2−α3)(α1−α4)

(α1−α3)(α2−α4)

For plain display, if we get η0 = 0, then we can rewrite the optical soliton solutions (46)-(51)
as follows:

https://ejamjournal.com/
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u(x, t) = arccos

1
2

2

∑
i=0

(
τi
(
α1 ± A

x−vt

)i
)2

+ 1

τi
(
α1 ± A

x−vt

)i

 , (52)

u(x, t) = arccos

1
2

2

∑
i=0

(
τi

(
α1 +

4A2(α1−α2)

4A2−[(α1−α2)(x−vt)]2

)i
)2

+ 1

τi

(
α1 +

4A2(α1−α2)

4A2−[(α1−α2)(x−vt)]2

)i

 , (53)

u(x, t) = arccos

1
2

2

∑
i=0

(
τi

(
α2 +

α2−α1
exp[B3(x−vt)]−1

)i
)2

+ 1

τi

(
α2 +

α2−α1
exp[B3(x−vt)]−1

)i

 , (54)

u(x, t) = arccos

1
2

2

∑
i=0

(
τi

(
α1 +

α1−α2
exp[B3(x−vt)]−1

)i
)2

+ 1

τi

(
α1 +

α1−α2
exp[B3(x−vt)]−1

)i

 , (55)

u(x, t) = arccos

1
2

2

∑
i=0

(
τi

(
α1 − Ã

B+(α3−α2) cosh[C(x−vt)]

)i
)2

+ 1

τi

(
α1 − Ã

B+(α3−α2) cosh[C(x−vt)]

)i

 , (56)

u(x, t) = arccos

1
2

2

∑
i=0

(
τi

(
α2 +

D
α4−α2+Fsn2(φ,l)

)i
)2

+ 1

τi

(
α2 +

D
α4−α2+Fsn2(φ,l)

)i

 , (57)

where

B3 = (α1−α2)
A , φ =

√
(α1−α3)(α2−α4)

2A (x − vt) , l2 = (α2−α3)(α1−α4)
(α1−α3)(α2−α4)

, v = ±
√

2ξ3−ζ0τ1
2ξ3

.

Expressed here, A is the amplitude of the soliton, while v is the velocity and B and C are the
inverse width of the solitons.

Remark 2. The optical soliton solutions (52)-(57) obtained by use of the suggested method
for Eq. (18) have been checked by Mathematica package program. According to our findings,
the rational function solution, the optical singular soliton, bright optical soliton, dark optical
soliton, and the Jacobi elliptic function solutions, that we find in this article, are not indicated in
the previous literature. These obtained results are new optical soliton solutions of Eq. (18).

Case 3: If we take ϵ = 0, δ = 3 and θ = 5, then

(v′)2 = (τ1+2τ2Θ+3τ3Θ2)2(ξ5Θ5+ξ4Θ4+ξ3Θ3+ξ2Θ2+ξ1Θ+ξ0)
ζ0

, (58)

v′′ = 2(2τ2+6τ3Θ)(ξ5Θ5+ξ4Θ4+ξ3Θ3+ξ2Θ2+ξ1Θ+ξ0)+(τ1+2τ2Θ+3τ3Θ2)(5ξ5Θ4+4ξ4Θ3+3ξ3Θ2+2ξ2Θ+ξ1)
2ζ0

, (59)
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where ξ5 ̸= 0, ζ0 ̸= 0. Respectively, solving the algebraic equation system (11) yields as follows:

ξ0 =
ξ5τ2

2
(
τ2

2 − 27τ2
3
)

243τ5
3

, ξ1 =
ξ5τ2

(
5τ2

2 − 54τ2
3
)

81τ4
3

, ξ2 =
ξ5
(
10τ2

2 − 27τ2
3
)

27τ3
3

,

ξ3 =
10ξ5τ2

2

9τ2
3

, ξ4 =
5ξ5τ2

3τ3
, ξ5 = ξ5, ζ0 = ζ0, τ0 =

−27τ2
3 + τ3

2

27τ2
3

,

τ1 =
τ2

2
3τ3

, τ2 = τ2, τ3 = τ3, c = ±1
3

√
9ξ5 − ζ0τ3

ξ5
. (60)

Substituting these consequences into Eqs. (6) and (12), we obtain

±(η − η0) =

√
ζ0

ξ5

∫ dΘ√
Θ5 + ξ4

ξ5
Θ4 + ξ3

ξ5
Θ3 + ξ2

ξ5
Θ2 + ξ1

ξ5
Θ + ξ0

ξ5

. (61)

Integrating Eq. (61), we get the solutions to the Eq. (18) as follows:

±(η − η0) = − 2A
3
√
(Θ − α1)3

, (62)

±(η − η0) =
A

(α1−α2)
3
2

arctanh
[√

Θ−α2
α1−α2

]
− 3A

√
Θ−α2

(α1−α2)(Θ−α1)
, α1 > α2, (63)

±(η − η0) = − 2A

(α1 − α2)
3
2

arctan

[√
Θ − α1

α1 − α2

]
− 6A√

Θ − α1(α1 − α2)
, (64)

±(η − η0) =
2A

α1−α2
arctanh

[√
Θ−α3
α2−α3

] (
1√

α2−α3
− 1√

α1−α3

)
, α1 > α2 > α3, (65)

±(η − η0) =
−2A√

Θ−α1(α1−α2)(α1−α3)

[√
(Θ − α2)(Θ − α3) + i (E(φ, l)− F(φ, l))

]
, (66)

where

A =
√

ζ0
ξ5

, E(φ, l) =
∫ φ

0

√
1 − l2 sin2 ψdψ, φ = − arcsin

√
Θ−α1
α2−α1

, l2 = α1−α2
α1−α3

,

±(η − η0) =
−2iA√

α2−α3(α1−α2)
(F(φ, l)− π(φ, n, l)) , α1 > α2 > α3 > α4,

π(φ, n, l) =
∫ φ

0
dψ

(1+n sin2 ψ)
√

1−l2 sin2 ψ
, φ = − arcsin

√
α3−α2
Θ−α2

, l2 = α2−α4
α2−α3

, n = α2−α1
α2−α3

.

Also α1, α2, α3, α4 and α5 are the roots of the polynomial equation

Θ5 +
ξ4

ξ5
Θ4 +

ξ3

ξ5
Θ3 +

ξ2

ξ5
Θ2 +

ξ1

ξ5
Θ +

ξ0

ξ5
= 0. (67)

ii) If we get n = 2, then Eq. (1) becomes

utt − uxx + sin(2u) = 0. (68)

In this section, we take into account the generalized sine-Gordon equation. Using the transfor-
mation (15) and therefore Eq. (4) carry into a ODE form

2(c2 − 1)VV ′′ + 2(1 − c2)(V ′)2 + V4 − 1 = 0. (69)
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Substituting Eqs. (8) and (9) into Eq. (69) and using balance principle gives

θ = ϵ + 2δ + 2.

According to this solution method, we attain the optical soliton solutions as follows:
Case 1
If we take ϵ = 0, δ = 1 and θ = 4, then

(v′)2 =
(τ1)

2(ξ4Θ4 + ξ3Θ3 + ξ2Θ2 + ξ1Θ + ξ0)

ζ0
, (70)

v′′ =
τ1(4ξ4Θ3 + 3ξ3Θ2 + 2ξ2Θ + ξ1)

2ζ0
, (71)

where ξ4 ̸= 0, ζ0 ̸= 0. Respectively, solving the equation system (13) gives

ξ0 =
ξ4 − 5ξ4τ4

0 + ξ2τ2
0 τ2

1

τ4
1

, ξ1 =
2
(
ξ2τ0τ2

1 − 4ξ4τ3
0
)

τ3
1

, ξ2 = ξ2, ξ3 =
4ξ4τ0

τ1
,

ξ4 = ξ4, τ0 = τ0, τ1 = τ1, ζ0 = ζ0, c = ±

√
2ξ4 − ζ0τ2

1
2ξ4

. (72)

Substituting these consequences into Eqs. (9) and (14), we attain

±(η − η0) =
√

ζ0
ξ4

∫ dΘ√
Θ4+

4τ0
ξ3τ1

Θ3+
4τ0

ξ3τ1
Θ2+

8τ2
0 (−ξ3τ0+ξ2τ1)

ξ3τ3
1

Θ+
4τ3

0 (−5ξ3τ0+4ξ2τ1)

4ξ3τ4
1

. (73)

Integrating Eq. (73), we get the solutions to the Eq. (68) as follows:

±(η − η0) =
−A

Θ − α1
, (74)

±(η − η0) =
2A

α1 − α2

√
Θ − α2

Θ − α1
, α2 > α1, (75)

±(η − η0) =
A

α1 − α2
ln
∣∣∣∣Θ − α1

Θ − α2

∣∣∣∣ , α1 > α2, (76)

±(η − η0) =
A√

(α1−α2)(α1−α3)
ln
∣∣∣∣√(Θ−α2)(α1−α3)−

√
(Θ−α3)(α1−α2)√

(Θ−α2)(α1−α3)+
√

(Θ−α3)(α1−α2)

∣∣∣∣ , α1 > α2 > α3, (77)

±(η − η0) =
2A√

(α1 − α3)(α2 − α4)
F(φ, l), α1 > α2 > α3 > α4, (78)

where

A =

√
ζ0

ξ4
, φ = arcsin

√
(Θ − α1)(α2 − α4)

(Θ − α2)(α1 − α4)
, l2 =

(α2 − α3)(α1 − α4)

(α1 − α3)(α2 − α4)
.

Additionally α1, α2, α3 and α4 are the roots of the polynomial equation

Θ4 +
ξ3

ξ4
Θ3 +

ξ2

ξ4
Θ2 +

ξ1

ξ4
Θ +

ξ0

ξ4
= 0. (79)
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Substituting the solutions (74)-(78) into (9) and (17), we get

u(x, t) = arccos


1
2

τ0 + τ1α1 ± τ1 A

x±
√

2ξ4−ζ0τ2
1

2ξ4
t−η0

2

+ 1

τ0 + τ1α1 ± τ1 A

x±
√

2ξ4−ζ0τ2
1

2ξ4
t−η0


, (80)

u(x, t) = arccos


1
2

τ0+τ1α1+
4A2(α2−α1)τ1

4A2−

(α1−α2)

x±

√
2ξ4−ζ0τ2

1
2ξ4

t−η0

2


2

+1

τ0+τ1α1+
4A2(α2−α1)τ1

4A2−

(α1−α2)

x±

√
2ξ4−ζ0τ2

1
2ξ4

t−η0

2


, (81)

u(x, t) = arccos


1
2

τ0+τ1α2+
(α2−α1)τ1

exp

 α1−α2
A

x±

√
2ξ4−ζ0τ2

1
2ξ4

t−η0

−1


2

+1

τ0+τ1α2+
(α2−α1)τ1

exp

 α1−α2
A

x±

√
2ξ4−ζ0τ2

1
2ξ4

t−η0

−1


, (82)

u(x, t) = arccos


1
2

τ0+τ1α1+
(α1−α2)τ1

exp

 α1−α2
A

x±

√
2ξ4−ζ0τ2

1
2ξ4

t−η0

−1


2

+1

τ0+τ1α1+
(α1−α2)τ1

exp

 α1−α2
A

x±

√
2ξ4−ζ0τ2

1
2ξ4

t−η0

−1


, (83)

u(x, t) = arccos

1
2

(
τ0 + τ1α1 − 2(α1−α2)(α1−α3)τ1

2α1−α2−α3+(α3−α2) cosh(M
A η)

)2

+ 1

τ0 + τ1α1 − 2(α1−α2)(α1−α3)τ1

2α1−α2−α3+(α3−α2) cosh(M
A η)

 , (84)

where M =
√
(α1 − α2)(α1 − α3), η =

(
x ±

√
2ξ4−ζ0τ2

1
2ξ4

t − η0

)
.

u(x, t) = arccos

1
2

(
τ0 + τ1α2 +

(α1−α2)(α4−α2)τ1
(α1−α4)sn2(φ,l2)+α4−α2

)2
+ 1

τ0 + τ1α2 +
(α1−α2)(α4−α2)τ1

(α1−α4)sn2(φ,l2)+α4−α2

 , (85)
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where φ =

√
(α1−α3)(α2−α4)

2A

(
x ±

√
2ξ4−ζ0τ2

1
2ξ4

t − η0

)
, l2 = (α2−α3)(α1−α4)

(α1−α3)(α2−α4)
.

Remark 3. The obtained solutions (80)-(85) by use of the recommended method for Eq.
(68) have been controlled by Mathematica package program. According to our research, the
rational function, the optical singular soliton, dark optical soliton, bright optical soliton, and the
Jacobi elliptic function solutions attained by use of the method defined in the research article
are not shown in prior literature. The optical solutions obtained here are the new solutions of
the equation Eq. (68).

Case 2
If we choose ϵ = 1, δ = 1 and θ = 5, then

(v′)2 =
τ2

1 (ξ5Θ5 + ξ4Θ4 + ξ3Θ3 + ξ2Θ2 + ξ1Θ + ξ0)

ζ0 + ζ1Θ
, (86)

v′′ =
τ1[(ζ0+ζ1Θ)(5ξ5Θ4+4ξ4Θ3+3ξ3Θ2+2ξ2Θ+ξ1)−ζ1(ξ5Θ5+ξ4Θ4+ξ3Θ3+ξ2Θ2+ξ1Θ+ξ0)]

2(ζ0+ζ1Θ)2 , (87)

where ξ5 ̸= 0, ζ1 ̸= 0. In turn, solving the system of algebraic equations (13) yields the following
results:

ξ0 = ξ0, ξ1 = ξ1, ξ2 = ξ2, ξ3 =
2τ0τ1(4ξ2τ2

0 (τ
4
0 −1)+τ1(2ξ0τ1(5τ4

0 +3)−ξ1τ0(7τ4
0 +1)))

3(τ4
0 −1)2 , ζ0 = ζ0,

ξ4 =
τ2

1 (7ξ2τ0(τ
4
0 −1)+τ1(2ξ1τ0(1−8τ4

0 )+ξ0τ1(25τ4
0 +3)))

3(τ4
0 −1)2 , ξ5 =

τ3
1 (2ξ2τ0(τ

4
0 −1)+τ1(ξ1(1−5τ4

0 )+8ξ0τ3
0 τ1))

3(τ4
0 −1)2 ,

τ0 = τ0, τ1 = τ1, ζ1 =
ζ0(2ξ2τ0(τ

4
0 −1)+τ1(ξ1(1−5τ4

0 )+8ξ0τ3
0 τ1))

(τ4
0 −1)2(ξ1τ0−2ξ0τ1)

, c = ±
√

τ1(ξ1τ0−2ξ0τ1)−ζ0(τ4
0 −1)

τ1(ξ1τ0−2ξ0τ1)
.

Substituting these consequences into Eqs. (9) and (14), we achieve

±(η − η0) =
√

3ζ0
τ3

1 (ξ1τ0−2ξ0τ1)

∫ √ Θ+
ζ0
ζ1

Θ5+
ξ4
ξ5

Θ4+
ξ3
ξ5

Θ3+
ξ2
ξ5

Θ2+
ξ1
ξ5

Θ+
ξ0
ξ5

dΘ. (88)

Integrating Eq. (88), we attain the following exact approximate solutions to the Eq. (68).
When Φ(Θ) = (Θ − α1)

5, we get

±(η − η0) = − 2A
3
√

ζ1(ζ0 + ζ1α1)

(
ζ0 + ζ1Θ
Θ − α1

) 3
2

. (89)

If we choose Φ(Θ) = (Θ − α1)
4(Θ − α2) and α1 > α2, then we find

±(η − η0) =
−A

α1−α2

[
(ζ0+ζ1α2)

2
√

ζ1(α1−α2)(ζ0+ζ1α1)
ln |K(Θ)|+ 1

Θ−α1

√
(ζ0+ζ1Θ)(Θ−α2)

ζ1

]
, (90)

where

K(Θ) = Θ−α1

(ζ0+2ζ1α1−ζ1α2)Θ+ζ0(α1−2α2)−ζ1α2α1+2
√

(ζ0+ζ1Θ)(ζ0+ζ1α1)(Θ−α2)(α1−α2)
. (91)

When Φ(Θ) = (Θ − α1)
3(Θ − α2)2 and α1 > α2, we attain

±(η − η0) =
−2A

(α1−α2)

√
ζ0+ζ1Θ

ζ1(Θ−α1)
− 2A

(α1−α2)
3
2

√
ζ0+ζ1α2

ζ1
arctan

[√
(Θ−α1)(ζ0+ζ1α2)
(α1−α2)(ζ0+ζ1Θ)

]
. (92)
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If we get Φ(Θ) = (Θ − α1)
2(Θ − α2)2(Θ − α3) and α1 > α2 > α3, then we obtain

±(η − η0) =
−A

(α1 − α3)
√

ζ1
[Y ln |P(Θ)|+ Z ln |R(Θ)|] , (93)

where

Y =
√

ζ0+ζ1α2
α2−α3

, (94)

P(Θ) = α2−Θ
2
√

(ζ0+ζ1Θ)(ζ0+ζ1α2)(Θ−α3)(α2−α3)+ζ0(α2−2α3)−ζ1α2α3+(ζ0+2ζ1α2−ζ1α3)Θ
, (95)

Z =
√

ζ0+ζ1α1
α1−α3

, (96)

R(Θ) =
2
√

(ζ0+ζ1Θ)(ζ0+ζ1α1)(Θ−α3)(α1−α3)+ζ0(α1−2α3)−ζ1α1α3+(ζ0+2ζ1α1−ζ1α3)Θ
Θ−α2

. (97)

When Φ(Θ) = (Θ − α1)
3(Θ − α2)(Θ − α3) and α1 > α2 > α3, then we find

±(η − η0) =
−2A

α1 − α3

√
ζ0 + ζ1α3

ζ1(α1 − α2)
E(φ, l), (98)

where

E(φ, l) =
∫ φ

0

√
1 − l2 sin2 ψdψ, φ = arcsin

√
(Θ−α3)(α2−α1)
(Θ−α1)(α2−α3)

, l2 = (α3−α2)(ζ0+ζ1α1)
(α1−α2)(ζ0+ζ1α3)

. (99)

If we acquire Φ(Θ) = (Θ − α1)
2(Θ − α2)(Θ − α3)(Θ − α4) and α1 > α2 > α3 > α3, then we

discover

±(η − η0) =
2A(α2−α4)

(α1−α2)
√

ζ1(α2−α3)(ζ0+ζ1α4)

(
ζ0+ζ1Θ
α1−α4

π(φ, n, l)− ζ0+ζ1α2
α2−α4

F(φ, l)
)

,

(100)
where

A =
√

3ζ0
τ3

1 (ξ1τ0−2ξ0τ1)
, π(φ, n, l) =

∫ φ
0

dψ

(1+n sin2 ψ)
√

1−l2 sin2 ψ
, (101)

and

φ = arcsin
√

(Θ−α4)(α3−α2)
(Θ−α2)(α3−α4)

, l2 = (α4−α3)(ζ0+ζ1α2)
(α2−α3)(ζ0+ζ1α4)

, n = − (α1−α2)(α3−α4)
(α2−α3)(α1−α4)

. (102)

4 Conclusions and Remarks

In this study, we have constituted the optical soliton solutions of the sine-Gordon and gen-
eralized sine-Gordon equations by use of the extended trial equation method. The obtained
optical soliton solutions were found in terms of trigonometric, hyperbolic, rational, elliptic,
and Jacobi elliptic functions. Therefore, it is indicated that some solutions in the literature are
specific cases of the attained solutions. At the same time, the accuracy of the attained solutions
has been controlled by the use of Mathematica. Moreover, the physical phenomena for the
attained solutions are investigated by adding two and three dimensional plots of the optical
soliton solutions to this study. We show that the extended trial equation method is an influential
mathematical instrument for solving nonlinear differential equations.
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