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Abstract

In this study, our focus is on obtaining an estimated solution for the nonlinear fractional time diffusion
equation. Specifically, we have utilized the Riemann Liouville fractional derivative. Additionally, we
have concerned Gaussian white noise in the input data. As we are aware, this problem is considered
ill-posed according to Hadamard’s definition. To tackle this problem, we have proposed a regularized
solution and demonstrated the convergence between the mild solution and the regularized solution.
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1 Introduction

In this study, we investigate the nonlinear time-fractional diffusion equations subject to Dirichlet
boundary conditions{

∂tu − D1−α
t ∆u = G(x, t, u), (x, t) ∈ Ω × (0, T)

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T)
(1)

and the terminal value condition

u(x, T) = ξ(x), x ∈ Ω. (2)

The domain Ω ⊂ Rd (d ≥ 1) is a bounded open set with a sufficiently smooth boundary ∂Ω, and
T > 0 is the terminal time. The symbol Dα

t represents the Riemann Liouville derivative of order
α (0 < α < 1), which will be defined later. Recently, many scientists have become increasingly
interested in the problems of fractional diffusion equations. Fractional differential equations
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have practical applications in modeling anomalous diffusion phenomena in various scientific
fields, such as physics, chemistry, engineering, and more [1, 2]. There are several definitions of
fractional derivatives, including Caputo, Riemann-Liouville, Caputo-Riesz, and others, which
are nonlocal operators in contrast to the local operators of integer-order derivatives. Depending
on the specific application and their experience, researchers may use a certain type of derivative.
One of the main differences between fractional derivatives and classical derivatives is the
non-local property of fractional derivatives. This property reflects the fact that the change at a
specific location in the environment is affected by the state of the entire region.

The main objective of this article is to propose a regularized solution that can approximate
the solution of (1)–(2). It is crucial to mention that our problem of reverse time is considered
ill-posed according to the Hadamard definition. Hence, a regularization method is required
to recover an accurate approximation. Assuming that the final value h is observed as ξϵ, it is
well-known that observations are susceptible to random errors that arise due to the limitations
of the measuring device (measurement errors). Consequently, it is common to encounter data
that is perturbed or noisy. This work focuses on situations where such perturbations manifest
in the form of additive stochastic white noise.

ξϵ(x) = ξ(x) + ϵW(x). (3)

Let’s examine a situation where ϵ indicates the amplitude of the noise, and W(x) represents
a process of Gaussian white noise. Additionally, suppose that the observations given in (3) can
not be accurately measured but can only be discretized and therefore observed in a sampled
format.

⟨ξϵ, ϕp⟩ = ⟨ξ, ϕp⟩+ ϵ⟨W, ϕp⟩, p = 1, . . . , n. (4)

where {ϕp} is a orthonormal basic of Hilbert space L2(Ω); ⟨·, ·⟩ denotes the inner product in
L2(Ω).

The direct problem of time-fractional diffusion equations featuring various types of frac-
tional derivatives has been widely investigated in recent years. Inverse problems for time-
fractional diffusion equations seek to retrieve initial data, source function, diffusion coefficient,
and other parameters through additional data. However, such problems have received lit-
tle attention recently [3–5]. As far as we know, no previous studies have focused on (1)–(2)
concerning random noise as depicted in (4).

The structure of this paper is structured as follows. Section 2 presents some preliminary
materials. An example of Ill-Posed is provided in Section 3.1. The primary results of this
paper are presented in Section 3.3 which is followed by an analysis of the convergent estimates
between a mild solution and a regularized solution under some prior assumptions on the exact
solution.

2 Preliminaries

Definition 2.1 (Podlubny [6]). Let α > 0 and β ∈ R, the Mittag-Leffler function is

Eα,β(ω) =
∞

∑
j=1

ω j

Γ(αj + β)
, ω ∈ C. (5)

Definition 2.2 (Podlubny [6]). Let α be a real number such that α ∈ (0, 1). The Riemann-
Liouville derivative of fractional order α with power-law of function u(t) is defined as

D1−α
t u(t) =

d
dt

(
1

Γ(1 − α)

∫ t

0
(t − s)α−1u(τ)dτ

)
(6)

where Γ(·) is the gamma function.
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The Riemann-Liouville definition conforms to all the mathematical principles within the
domain of fractional calculus, especially when utilizing Laplace transform.

Property 2.1. The Laplace transform of the Riemann-Liouville fractional integral operator of order
α ∈ (0, 1) can be obtained in the form of:

L
{

D1−α
t u(t)

}
= ω1−αû − D−α

t u(0)

where û is the Laplace transform of u,

û = L{u(t)} =
∫ +∞

0
e−ωsu(s)ds, s ∈ C.

Property 2.2 (Podlubny [6]). Given reals number α ∈ (0, 1) and λ > 0. There always exists positive
constants B1(α) and B2(α) such that

B1(α)

1 + λ
≤ Eα,1(−λ) ≤ B2(α)

1 + λ
. (7)

Moreover, the following identity is applicable for t > 0∫ ∞

0
e−ωtEα,1(−λtα)dt =

ωα−1

ωα + λ
, ω ∈ C, Re(ω) > λ1/α.

2.1 Some necessary spaces

We have Ω ⊂ Rd be an open bounded domain and let ⟨·, ·⟩ be the inner product of L2(Ω).
Then, there exists an orthonormal basis {ϕp}∞

p=1 (ϕp ∈ H10(Ω) ∩ C∞(Ω)) of L2(Ω) consisting
of eigenfunctions 0 < λ1 ≤ λ2 ≤ . . . ≤ limp→∞ λp = +∞ of the Laplacian operator −∆ in Ω
such that −∆ϕp(x) = λpϕp(x) for x ∈ Ω and ϕp(x) = 0 for x ∈ ∂Ω. For µ > 0, the Sobolev
class of function is defined as follows

Hµ(Ω) =

{
u ∈ L2(Ω) :

∞

∑
p=1

λ
µ
p
〈
u, ϕp

〉2
< ∞

}
,

which is a Hilbert space and endowed with the norm ∥u∥2
Hµ = ∑∞

p=1 λ
µ
p
〈
u, ϕp

〉2.

Definition 2.3 (Zou and Wang [7]). Given a measure probability space (D,F , µ) and Banach
space B. The function u : (0, T) → B measurable such that ess supt∈(0,T) ∥u(t)∥B < ∞. The
Bochner space L2(D, B) ≡ L2((D,F , µ); B) is defined with a norm

∥u(t)∥L2(D,B) :=
(∫

D
∥u(t)∥Bdµ

)1/2

=
(
E∥u(t)∥2

B
)1/2

< +∞. (8)

The space of B-valued predictable processes u such that

∥u∥Z(0,T;B) = sup
0≤t≤T

∥u(t)∥L2(Ω,B). (9)

2.2 Integral form of the solution

We denote the inner product up(u) = ⟨u(·, t), ϕp⟩, ξp = ⟨g, ϕp⟩ and Gp(u)(t) = ⟨G(·, t, u(·, t)), ϕp⟩.
The first equation of system (1) is transformed into

⟨∂tu, ϕp⟩ − ⟨D1−α
t ∆u, ϕp⟩ = ⟨G(·, t, u(·, t)), ϕp⟩.

https://ejamjournal.com/
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Since −∆ϕp = λpϕp, so ∂tup + λpD1−α
t up = Gp(u). Utilize Laplace transformation to obtain

L
{

∂tup
}
+ L

{
λpD1−α

t up

}
= L

{
Gp(u)

}
,

Applying the properties of Laplace transformations

ωûp − up(0) + ω1−αûp − D−α
t up(0) = Ĝp(u).

Use simple transformations we have

ûp =
ωα−1

ωα + λp

(
up(0) + D−α

t up(0)
)
+

ωα−1

ωα + λp
Ĝp(u). (10)

Property 2.2–iii implies that

L−1
{

ωα−1

ωα + λp

}
= Eα,1(−λptα)

and Laplace transform of the convolution integral

L−1
{

ωα−1

ωα + λp
Ĝp(u)

}
=
∫ t

0
Eα,1(−λp(t − s)α)G(u)(s)ds.

Taking inverse Laplace transforms the two sides of (10) we get

up(t) = Eα,1(−λptα)
(
up(0) + D−α

t up(0)
)
+
∫ t

0
Eα,1(−λp(t − s)α)Gp(u)(s)ds,

and the terminal condition up(T) = ξp give us

(
up(0) + D−α

t up(0)
)
=

1
Eα,1(−λptα)

(
ξp −

∫ T

0
Eα,1(−λp(T − s)α)Gp(u)(s)ds,

)
.

Thus

up(t) =
Eα,1(−λptα)

Eα,1(−λpTα)

(
ξp −

∫ T

0
Eα,1(−λp(T − s)α)Gp(s)(u)ds,

)
+
∫ t

0
Eα,1(−λp(t − s)α)Gp(u)(s)ds.

Definition 2.4 (Mild solution). Suppose that Problem (1)–(2) has a solution u ∈ L2(0, T; Ω),
then the mild solution is presented as

u(x, t) =
∞

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)

(
ξp −

∫ T

0
Eα,1(−λp(T − s)α)Gp(u)(s)ds

)
ϕp(x)

+
∞

∑
p=1

(∫ t

0
Eα,1(−λp(t − s)α)Gp(u)(s)ds

)
ϕp(x), (11)
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2.3 Statistic estimate the terminal function

Definition 2.5 (Phuong et al. [8]). Assuming the function ξ ∈ Hµ (µ > 0). The sequences of n
observations of ξ are ⟨ξϵ, ϕp⟩, p = 1, . . . , n. Statistics estimation of ξ is proposed as

ξ̃ϵ(x) =
n

∑
p=1

⟨ξϵ, ϕp⟩ϕp(x). (12)

Lemma 2.6. Let ξ̃ϵ ∈ L2(Ω) and suppose that ξ ∈ Hµ(Ω), µ > 0. The error is estimated as following

E∥ξ̃ϵ − ξ∥2
L2(Ω) ≤ ϵ2n +

1
λ

µ
n
||ξ||2Hµ . (13)

Where n(ϵ) := n depends on ϵ and satisfies that limϵ→0+ n(ϵ) = +∞.

Proof. We begin our argument by recognizing that

E||ξ̃ϵ − ξ||2L2(Ω) = E

(
n

∑
p=1

⟨ξϵ
p − ξ, ϕp⟩2

)
+

∞

∑
p=n+1

⟨ξ, ϕp⟩2

= ϵ2E

(
n

∑
p=1

W2
p

)
+

∞

∑
p=n+1

λ
−µ
p λ

µ
p⟨ξ, ϕp⟩2

≤ ϵ2E

(
n

∑
p=1

W2
p

)
+

1
λ

µ
p

∞

∑
p=n+1

λ
µ
p⟨ξ, ϕp⟩2.

Since Wp = ⟨W, ϕp⟩
i.i.d∼ N(0, 1) implies that EW2

p = 1. We, therefore, acquire the desired
result.

3 Main results

3.1 Ill-posedness

Suppose the terminal data ξ(x) = ϕn(x) ∈ Hµ(Ω) has observation values that follow the
random model

⟨ξϵ, ϕp⟩ = ⟨ξ, ϕp⟩+ ϵ⟨W, ϕp⟩, p = 1, . . . , n.

We have statistics estimate for h and f that are obeyed in the models

ξ̃ϵ(x) =
n

∑
p=1

⟨ξϵ, ϕp⟩ϕp(x).

The source

G(x, t, uϵ) =
∞

∑
p=1

B1

1 + λpTα
⟨uϵ(·, t), ϕp⟩ϕp(x). (14)

Problem (1) associated with the terminal function ξ̃ϵ(x) and the source f ϵ(x, t) has the mild
solution

uϵ(x, t) =
∞

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)

(
ξ̃ϵ

p −
∫ T

0
Eα,1(−λp(T − s)α)Gp(uϵ)(s)ds,

)
ϕp(x)

+
∞

∑
p=1

(∫ t

0
Eα,1(−λp(t − s)α)Gp(uϵ)(s)ds

)
ϕp(x). (15)
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We consider

u(x, t)− uϵ(x, t) =
∞

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)
(ξp − ξ̃ϵ

p)ϕp(x)

−
∞

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)

(∫ T

0
Eα,1(−λp(T − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds,

)
ϕp(x)

+
∞

∑
p=1

(∫ t

0
Eα,1(−λp(t − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

)
ϕp(x),

at the initial time, we have

u(x, 0)− uϵ(x, 0) =
∞

∑
p=1

1
Eα,1(−λpTα)

(ξp − ξ̃ϵ
p)ϕp(x)

−
∞

∑
p=1

1
Eα,1(−λpTα)

(∫ T

0
Eα,1(−λp(T − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds,

)
ϕp(x),

yields

E∥u(·, 0)− uϵ(·, 0)∥L2(Ω)

= E

∣∣∣∣ 1
Eα,1(−λpTα)

(
(ξp − ξ̃ϵ

p)−
(∫ T

0
Eα,1(−λp(T − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

))∣∣∣∣2 .

For convenience, we denote

M1 := ξp − ξ̃ϵ
p

M2 :=
∫ T

0
Eα,1(−λp(T − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

then

2E∥u(·, 0)− uϵ(·, 0)∥L2(Ω) ≥
∣∣∣∣ 1
Eα,1(−λpTα)

∣∣∣∣2 (EM2
1 − 2EM2

2
)

. (16)

Since Lemma 2.2, there exist a constant B1 such that

Eα,1(−λn(T − s)α) ≥ B1

1 + λn(T − s)α
≥ B1

1 + λnTα
,

we can get

2E∥u(·, 0)− uϵ(·, 0)∥L2(Ω) ≥
∣∣∣∣1 + λnTα

B1

∣∣∣∣2 (EM2
1 − 2EM2

2
)

.

Where EM2
1 = ϵ2 and using Hölder inequality, we have

EM2
2 = E

(∫ T

0
Eα,1(−λp(T − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

)2

≤
(∫ T

0
E2

α,1(−λp(T − s)α)ds
)(∫ T

0
E(Gp(u)(s)− Gp(u)(s))2ds

)
.
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Let B2 be a constant such that Eα,1(−λp(T − s)α) ≤ B2. The function f defined as (14), one
obtain

EM2
2 ≤ T2B2

2

∣∣∣∣1 + λpTα

B1

∣∣∣∣2 ∥u(·, 0)− uϵ(·, 0)∥2
L2(Ω). (17)

The inequality (16) will become

(2 + T2B2
2)E∥u(·, 0)− uϵ(·, 0)∥L2(Ω) ≥

∣∣∣∣1 + λnTα

B1

∣∣∣∣2 ϵ2.

By choosing ϵ = 1/ 3
√

λn, and according to Lemma 2.6, we have

lim
n→∞

E∥ξ̃ϵ − ξ∥2
L2(Ω) ≤ lim

n→∞

(
ϵ2n +

1
λ

µ
n
||ξ||2Hµ

)
= 0,

however

lim
n→∞

E(2 + T2B2
2)E∥u(·, 0)− uϵ(·, 0)∥L2(Ω) ≥ lim

n→∞

∣∣∣∣1 + λnTα

B1

∣∣∣∣2 ϵ2 = +∞.

Consequently, we can deduce that the problem is ill-posed in the sense of Hadamard.

3.2 Approximate solution

The regularized solution for our problem is constructed in this section using the truncation
Fourier series method. To obtain the regularized solution, we first introduce a truncation
operator. IN f = ∑N

p=1⟨ f , ϕp⟩ϕ(x) for all f ∈ L2(Ω). We consider the problem
∂tuϵ − D1−α

t ∆uϵ = IN f (x, t, uϵ), (x, t) ∈ Ω × (0, T)
uϵ(x, T) = IN ξ̃ϵ(x), x ∈ Ω.
uϵ(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T)

(18)

N := N(ϵ) and n := n(ϵ) respectively are the regularized parameter and the sample size.
Similarly, there is also a mild solution to this problem

uϵ(x, t) =
N

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)

(
ξ̃ϵ

p −
∫ T

0
Eα,1(−λp(T − s)α)Gp(uϵ)(s)ds

)
ϕp(x)

+
N

∑
p=1

(∫ t

0
Eα,1(−λp(t − s)α)Gp(uϵ)(s)ds

)
ϕp(x).

Definition 3.1 (Regularized solution). Given real numbers µ, ν > 0 and the integrals 0 < N < n.
Let h ∈ Hµ(Ω) and G(x, t) ∈ L∞(0, T;Hν(Ω)), we call

uϵ(x, t) =
N

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)

(
ξ̃ϵ

p −
∫ T

0
Eα,1(−λp(T − s)α)Gp(uϵ)(s)ds

)
ϕp(x)

+
N

∑
p=1

(∫ t

0
Eα,1(−λp(t − s)α)Gp(uϵ)(s)ds

)
ϕp(x) (19)

as the regularized solutin of Problem (1)–(2).
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Theorem 3.2 (Existence and uniqueness). Let B1 and B2 be a constant such that

max
{

E2
α,1(−λp(t − s)α), E2

α,1(−λp(t − s)α)
}
≤ B1,

(
Eα,1(−λptα)

Eα,1(−λpTα)

)2

≤ B2.

Suppose further that G is global Lipschitz,

G∥(·, t, u1(·, t))− G(·, t, u1(·, t))∥2
L2(Ω) ≤ L∥u1 − u2∥2

L2(Ω).

If B1T(B2 + 1)L < 1 and Problem (1)–(2) has a solution u ∈ L∞(0, T; L2(Ω)) then the integral
equation (19) existence and uniqueness solution.

Proof theorem 3.2. To establish the existence and uniqueness of the solution to the integral
equation, we make use of the Banach fixed point theorem. First, we reformulate the operator
Φ(u)(x, t) in the form:

Φ(uϵ)(x, t) =
N

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)

(
ξ̃ϵ

p −
∫ T

0
Eα,1(−λp(T − s)α)Gp(uϵ)(s)ds

)
ϕp(x)

+
N

∑
p=1

(∫ t

0
Eα,1(−λp(t − s)α)Gp(uϵ)(s)ds

)
ϕp(x). (20)

For any uϵ
1, uϵ

2 ∈ Z(0, T; H), the Parseval identity leads to

∥Φ(uϵ
1)(·, t)− Φ(uϵ

2)(·, t)∥2
L2(Ω)

=
N

∑
p=1

(
Eα,1(−λptα)

Eα,1(−λpTα)

)2 (∫ T

0
Eα,1(−λp(T − s)α)(Gp(uϵ

1)(s)− Gp(uϵ
2)(s))ds

)2

+
N

∑
p=1

(∫ t

0
Eα,1(−λp(t − s)α)(Gp(uϵ

1)(s)− Gp(uϵ
2)(s))ds

)2

,

First, note that there exists a constant B1 and B2 such that

max
{

E2
α,1(−λp(t − s)α), E2

α,1(−λp(t − s)α)
}
≤ B1,

(
Eα,1(−λptα)

Eα,1(−λpTα)

)2

≤ B2

and using the Hölder inequality, we arrive at

∥Φ(uϵ
1)(·, t)− Φ(uϵ

2)(·, t)∥2
L2(Ω)

≤ B1B2T
N

∑
p=1

∫ T

0

∣∣Gp(uϵ
1)(s)− Gp(uϵ

2)(s)
∣∣2ds

+ B1T
N

∑
p=1

∫ t

0

∣∣Gp(uϵ
1)(s)− Gp(uϵ

2)(s)
∣∣2ds,

we find that

∥Φ(uϵ
1)(·, t)− Φ(uϵ

2)(·, t)∥2
L2(Ω)

≤ B1T(B2 + 1)
∫ T

0

∥∥G(·, t, uϵ
1(·, t))(s)− Gp(·, t, uϵ

1(·, t))(s)
∥∥2

L2(Ω)
ds.
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As for the global Lipschitz property of f , we can get

∥Φ(uϵ
1)(·, t)− Φ(uϵ

2)(·, t)∥2
L2(Ω)

≤ B1T(B2 + 1)L
∫ T

0

∥∥uϵ
1(·, t)− uϵ

2(·, t)
∥∥2

L2(Ω)
ds.

One can confirm that

∥Φ(uϵ
1)(·, t)− Φ(uϵ

2)(·, t)∥2
L2(Ω) ≤ B1T2(B2 + 1)L

∥∥uϵ
1 − uϵ

2
∥∥2

L∞(0,T;L2(Ω))
.

Since B1T2(B2 + 1)L, using Banach fixed point theorem, we show that Φ(uϵ) = uϵ has a unique
solution.

3.3 Estimation of errors

Theorem 3.3. Given real numbers µ, ν, τ > 0 and the integrals 0 < N < n. Let h ∈ Hµ(Ω) and G is
a global Lipschitz. If Problem (1)–(2) has the solution u ∈ Z(0, T;Hτ(Ω)) and B1, B2 are constants
which are choose as Theorem 3.2 and satisfies (B2L + 1)B1T2 < 1. Suppose further that G is global
Lipschitz, then

∥u(·, t)− uϵ(·, t)∥2
Z(0,T;L2(Ω))

≤ 4
1 − (B1B2T2L + B1T2)

[
B1

(
ϵ2n +

1
λ

µ
n
||ξ||2Hµ(Ω)

)
+

1
λτ

N
∥u∥2

ZHτ (Ω)

]
The regularization parameter N and the sample size n are chosen such that

lim
ϵ→0+

N(ϵ) = lim
ϵ→0+

n(ϵ) = +∞, lim
ϵ→0

ϵ2n = 0, 0 < N(ϵ) < n(ϵ).

Proof theorem 3.3. We have

u(x, t)− uϵ(x, t) =
N

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)
(ξp − ξ̃ϵ

p)ϕp(x)

−
N

∑
p=1

Eα,1(−λptα)

Eα,1(−λpTα)

(∫ T

0
Eα,1(−λp(T − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

)
ϕp(x)

+
N

∑
p=1

(∫ t

0
Eα,1(−λp(t − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

)
ϕp(x)

+
∞

∑
p=N+1

up(t)ϕ(x) =: Q1(x, t)−Q2(x, t) +Q3(x, t) +Q4(x, t). (21)

First, we realize that from Lemma (2.2), there exists a constant B2 such that∣∣∣∣ Eα,1(−λptα)

Eα,1(−λpTα)

∣∣∣∣2 ≤ B2.

To facilitate the reader, we divided proof into 4 steps:

Step 1. We have

E∥Q1(·, t)∥2
L2(Ω) =

N

∑
p=1

∣∣∣∣ Eα,1(−λptα)

Eα,1(−λpTα)

∣∣∣∣2 (ξp − ξ̃ϵ
p)

2 ≤ B1∥h − ξ̃ϵ∥2
L2(Ω).

https://ejamjournal.com/


Recovering solution of the Reverse nonlinear Doan Thi Thanh Xuan and Vo Thi Thanh Ha | 69

Lemma 2.6 leads to

E∥Q1(·, t)∥2
L2(Ω) ≤ B2

(
ϵ2n +

1
λ

µ
n
||ξ||2Hµ(Ω)

)
. (22)

Step 2. We also have

E∥Q2(·, t)∥2
L2(Ω) =

N

∑
p=1

∣∣∣∣ Eα,1(−λptα)

Eα,1(−λpTα)

∣∣∣∣2 (∫ T

0
Eα,1(−λp(T − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

)2

.

Using Hölder inequality, we obtain

E

(∫ T

0
Eα,1(−λp(T − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

)2

≤
(∫ T

0
E2

α,1(−λp(T − s)α)ds
)(∫ T

0
E(Gp(u)(s)− Gp(uϵ)(s))2ds

)
.

Since Lipschitz property of the source, we have

E∥Q2(·, t)∥2
L2(Ω) ≤ B1B2T2L∥u − uϵ∥2

Z(0,T;L2(Ω)).

Step 3. Similarly, we have

E∥Q3(·, t)∥2
L2(Ω) =

N

∑
p=1

E

(∫ t

0
Eα,1(−λp(t − s)α)(Gp(u)(s)− Gp(uϵ)(s))ds

)2

.

Note that E2
α,1(−λp(t − s)α) ≤ B1. Thus

E∥Q3(·, t)∥2
L2(Ω) ≤ B1T2∥u − uϵ∥2

Z(0,T;L2(Ω)) (23)

Step 4.

Q4(x, t) =
∞

∑
p=N+1

1
λn

λpup(t)ϕ(x)

then

∥Q4(·, t)∥2
L2(Ω) =

∞

∑
p=N+1

1
λτ

p
λτ

pu2
p(t)

so we have
E∥Q4(·, t)∥2

L2(Ω) ≤
1

λτ
N
∥u∥2

Z(0,T;Hτ(Ω)).

Taking (22)–(3.3) into account, we have

1
4

E∥u(·, t)− uϵ(·, t)∥2
L2(Ω)

≤∥Q1(·, t)∥2
L2(Ω) + ∥Q2(·, t)∥2

L2(Ω) + ∥Q3(·, t)∥2
L2(Ω) + ∥Q4(·, t)∥2

L2(Ω)

≤B1

(
ϵ2n +

1
λ

µ
n
||ξ||2Hµ(Ω)

)
+ (B1B2T2L + B1T2)∥u − uϵ∥2

Z(0,T;L2(Ω))

+
1

λτ
N
∥u∥2

Z(0,T;Hτ(Ω)).

By rearranging, we get the result of the theorem.
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