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Abstract

This paper is concerned with the dynamics of a wide class of nonlinear, reversible, stochastic p-Laplacian
Selkov delay lattice systems define on Z“ driven by locally Lipschitz noise. We first establish the global
well-posedness of the systems with local Lipschitz delay diffusion terms. Under certain conditions, we
prove the existence and uniqueness of weak pullback mean random attractors for the mean random
dynamical system associated with the stochastic equation in a product Hilbert space L?(Q, Fi; £2 x (?)
x L?(Q, Fr; L?((—p,0), £% x £?)). The mean random dynamical systems theory proposed by Wang
(J. Differ. Equ., 31:2177-2204, 2019) is used to deal with the difficulty caused by the nonlinear noise.
The results of this paper are new even when the discrete p-Laplacian is replaced by the usual discrete
Laplacian.
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1 Introduction

For the past ten years, lattice dynamical systems have received much attention owing to their
wide applications in the sciences and engineering (see, e.g., [1, 2] and the references therein).
The asymptotic behavior of lattice systems has been discussed in [3, 4] for deterministic lattice
systems, and in [5-7] for stochastic lattice systems. Recently, the existence of mean random
attractors has been studied for stochastic lattice systems with nonlinear noises in [8-10].

In this article, we study the random attractors of the nonlinear, reversible, p-Laplacian
stochastic lattice Selkov systems with time delay defined on Z“ driven by locally Lipschitz

Contact: Yan Wang &9 wangyanbetter@163.com; Xiaolan Qin &4 ginxiaolan18@163.com; Hailang Bai
& baihailang0614@163.com; Yu Wang &4 wangyu0872@163.com

© 2023 The Author(s). Published by Mersin University Press. This is an Open Access article distributed under the
terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.


 https://doi.org/10.61383/ejam.20231233
mailto:wangyanbetter@163.com
mailto:qinxiaolan18@163.com
mailto:baihailang0614@163.com
mailto:wangyu0872@163.com
https://creativecommons.org/licenses/by/4.0/

2 Electron. J. Appl. Math. 2023, Vol. 1, No. 2

noise:

( d

dui(t) =( —dv Y (Jui(t) = wa ()72 (i) — (1))

j=1

— Jugn () — wi ()72 (o (£) — ui (1))
— aqui(t) + by (£)oi(t) — by () + fli(t))dt

+ €1 i (hk,i(t) + ?Tk,i(ui(t — p)))de(t),
= (1)
do;(t) :( —dy Y ([0i(t) — vy ()72 (0i(t) — vy (1))

=1

— v (£) = 0i(B) |22 (v (1) — 0i(1)))
— ay0i(t) — by (£)v; () + b () + fzi(t)>dt

i

LY (ia(t) + G (it — 0)))dWi(8),
k=1

with initial conditions
u(t) =ug, u(s) =¢(s—1), v(r)=0v, v(s)=¢(s—1), s€(t—p1), ()

wheret > 17, T€ER,i = (il,...,i]',...,id) € Zd,ij+1 = (il,...,Z‘j—l-l,...,id),llj*l = (i1,...,i]'—
1o ig), = (Ui)jega,© = (0i)iega € 0 = {u = (U)jeqe : Liegd |uil* < +o0}, €1,62 > 0,
p1,p2>2,9>1,p €[0,1] is a time delay parameter, d,dy, a1, a3, by, by are positive constants,
A1) = (ul))iczo, fot) = (Fa(t)iczer () = (i(£)enyjeze € ¢ are time independent
random sequences, (W )kew is a sequence of independent two-sided real-valued Wiener process
which is defined on a complete filtered probability space (Q, F, { F; }ter,P), and 03 ; : R — R
is a sequence locally Lipschitz continuous functions (uniformly in k), which satisfies, for any
s € R,i € Z% and k € N, there exist constants Ori > 0and ay > 0 such that

|0%,i(s)| < Ok + akls|, 3)

where [|6]]* = Lienw iz |0il* < 00, [|a]|* = Lien lax]? < co.

In this work, we study the stochastic lattice reversible Selkov system; that is, a widely
influential and classic mathematical model of this feedback of ATP(Adenosine triphosphate) on
PFK (Adenosine diphosphate), which has been widely investigated in [11-16]. The attractors
of stochastic Selkov systems have been studied by many scholars. For example, for stochastic
lattice reversible Selkov equations with additive noises, the existence of a random attractor
was proved by Li in [17, 18]. For the Selkov equations on a bounded domain space with
dimension n < 3, the existence of a global attractor for the solution semiflow was explored
by You [19]. For non-autonomous stochastic reversible Selkov systems with multiplicative
noise, the existence of random attractors and upper semi-continuous of an attractor as noise
approaches zero have been established by Guo et al. [20]. According to the results in the
existing literature, we find that the existence and uniqueness of weak pullback mean random
attractors for nonlinear, reversible, p-Laplacian stochastic lattice Selkov equations (1)-(2) are not
studied. So, in this paper, we will investigate the existence and uniqueness of weak pullback
mean random attractors of the system (1)-(2) with the local Lipschitz noise and delay terms.

The theory of attractors is an effective way to study long time behavior and qualitative
properties of dynamic systems. The concept of pathwise pullback random attractor was first
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proposed by Crauel, Flandoli, and Schmalfuss in [21, 22]. Then the pathwise pullback random
attractors are widely discussed and studied by many authors, such as literature [23-51]. The
classical theory of random dynamical systems is pathwise. However, when the stochastic
equation is driven by additive or linear multiplicative noise, the pathwise random attractors
can be explored by using the idea of a deterministic pathwise equation; that is, the stochastic
equation can be transformed into a pathwise deterministic system. However, we don’t know
how to transform the stochastic equation into a pathwise deterministic equation when the
noise is nonlinear, so we have no way to study the pathwise pullback random attractors of the
system driven by nonlinear noise. Therefore, in order to overcome the difficulty caused by the
Lipschitz nonlinear diffusion terms o (see, e.g., [8, 36, 39]). In the present article, we apply the
mean random dynamical systems theory proposed by Wang in reference [34] to investigate the
weak pullback mean random attractors of (1)-(2).

However, the mean random dynamic systems theory is established on reflexive Banach
spaces (see [34, 36]). We usually choose the Banach spaces as a phase space to study the
dynamics of delayed systems, see [52-54]. Note that the Banach space C([—p, 0], ¢* x (?) is
not reflexive, and hence can not be used as a phase space to study mean random attractors of
(1)-(2). In order to solve this problem, we choose the product Hilbert space L?(Q), Fr; £> x %) x
L*(Q), Fr; L2((—p,0), 2 x £?)) as a phase space to study the existence and uniqueness of the
weak pullback mean random attractors for the stochastic nonlinear p-Laplacian Selkov system
(1)-(2) with time delay on Z¢ driven by locally Lipschitz noise.

The lattice systems have many applications in physics, chemistry, biology, and other disci-
plines, such as propagation of nerve pulses, electric circuits, and image processing [11, 55-57].
In addition, lattice systems come from the spatial discretizations of partial differential equations
[58]. Random attractors of lattice systems have been studied by many scholars, see, e.g., [59-64]
for the pathwise pullback random attractors. [7, 34, 65-68] for the pullback mean random
attractors.

This paper is organized as follows. In Section 2, in order to prove the existence and
uniqueness of the solutions of (1)-(2), we transform the system (1)-(2) with time delay into
system (22)-(23) without time delay. In Section 3, we first define the concept of a mean random
dynamical system in a product Hilbert space L?(Q), Fr; €2 x (?) x L*(Q, Fr; L*((—p,0), £2 x
(?)), then prove the existence and uniqueness of weak pullback mean random attractors of
(1)-(2) under condition (€7 + €3) < ﬁ.

2 Existence and uniqueness of solutions

In this section, we prove the existence and uniqueness of solutions to (1)-(2).

Let 0" := {u = (tj)jcpa : Yjcza |Ui]" < 400} for r > 1. The norm of ¢" is denoted by || - ||,.
The norm and inner product of ¢? are written as || - || and (-, -), respectively.

In this paper we will use the following inequalities many times:

=y < Cle—yl Ty Yy eR r >, 4)
|x1]”2x1 — |x2\”2x2‘ < Cr(|9c1]”2 + ]xz\”z)\xl — x|, Vx,x2 €R, v >2, )
bibyx® 1y — b3x®112 — p2x?y? 4 bybyx¥1Tly <0, Vx,y €R, p > 1. (6)

Assume a > 0, k1, ko > 0 are constants, if k1 > kp, there exists a constant oy > 0 such that

v — k1 + kpe? < 0. (7)
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We define four operators B;, B]’.‘ 02 S5 2 F 2?2 5 2and G 2 — 2 by (B]-u)l- =
e — g, (Biu)j = wya —ui, F(u,0) = (M?qvi)iezd and G(u) = (M?q+1)iezd forj € [1,d]NN,
u= (ui)iGZd S EZ,U = (vi>i€Zd S 62 .

Then the discrete d-dimensional p-Laplace operator A, : (2(Z%) — (*(Z") with p > 2 is
defined by

d
(Ap)i = = Y (1(Bfu)ilP=2 x (Bju)i + | (Byu)il =2 x (Bju);),

j=1
which indicates that

(Apu, u) Z||Bu|\p>0 (8)
By (5) and [69, 70], for p > 2, u,v € /2, we obtain

| Apts = Apo]2 = 22( o)lP=2 x (Bjo); — | (Bju)l" 2 x (Bju),

iczd j=

+ | (Bo)il" 2 x (Bjo)i — |(Byu)il" 2 x (Bju);)
x (1(Bjo)il" =2 x (Bjo); — |(Bju)il" =2 x (Bju);
+ 1Byl 2 x (Bjo); — |(Bju)il" 2 x (Bju);)

d
ZZ‘I (Bfo)ilP~2 x (Bfo); — [(Bju)i|"~* x (Bfu);
iczd j=1
+ ’ B]U)i|p72 X (B]'U)l' — ‘(B]‘Ll)i|p72 X (B]'u)l‘ ’
d
<2 Y ) [I(Bonl? x (Bjo)i — (Bju)ilr x (Bju|
iezd j=1
d
+2 1 3 || Bl x (Bioi = (Bl x (B :
i€zd j=

: 2
<40 ) M(va)i’pfz x (Bjo)i — | (Bju)|P~2 x (Bju);

iezd j=1
d
<8C2 Y Y (I(Bio)iP~ + |(Bju)iP )| (Bjo): — (Bju)il?
iezd j=1
< 2242 (|||~ + [|o|2P ) u — 0| ©)

By (4), Young’s inequality and [16], we find that for any g > 1, u, uy,u»,v,v1,v, € £? and
lull < m flull < m, fluzll < n, flofl < n, floa]l < m, floaf] < n,

I (1, 01) — F(u,02) |12
4 4 4
< 2d(1+4C3) ([[ually) + lluzlly) + o2l (lur — 2|l + [lor — v2][?),  (10)
and

4 4
IG(u) = G(o) || < 2dC5, 1 ([[ullyg + 2]l 9) u — oI (11)
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By (9)-(11), we infer that the operators A,u, F(u,v), G(u) are locally Lipschitz continuous;
that is, for every n € IN, exists ¢1(n), c2(n), c3(n) > 0, such that for any u, v, uy, u,v1,v2 € 2,
p=2,and [l < n, s < luall < m o]l < n, or | <, leal] <

At — Aol < e (m)]ju — o
[(Apur — Apuz, ur — u2)| < c1(n)|jug — ua||?,
[(Aptir = Apuz, 01 = 02)| < ex(m)(lur — ua|* + oy — 02 %), (12)

1E (1, 01) = F(uz,02) |* < ca(n) (lur — ua|* + o1 — 22 ?),
|(F(ur,01) = F(uz,02),u1 — u2)| < ca(n) (lur — wa|* + o1 — 02 ?),

|(F(u1,01) — F(up,02),01 — 02) | < co(n)(||luz — ua||> + [lor — 02|?), (13)
and

IG(u) = G(0)|I* < c3(n)||u —o|]%,

[(G(1) — G(uz), u1 — uz)| < c3(n)|lur — uaf?,

[(G(11) — G(u2),v1 — v2)| < c3(n)(|Jug — ua||* + [Jo1 — 02 1?). (14)

For every k € IN, we write 03 (1) = (¢ ;(1;));cz4 for all u € /2. Then we find

Y llow()[|* < 2018013 + 2| el e (15)
keN

Note that oy : 2 — ¢? is also locally Lipschitz continuous; that is, for every n € IN, there exists
cs(n) >0, forevery u,v € 22, ||u| < n,|v|]| <n,

Y llow(u) = ox(0)]* < ca(n)[Ju — o] (16)
keIN

In order to explore the existence and uniqueness of the solutions to the problem (1)-(2),
we assume fi, fo, hy are (>-valued progressively measurable processes satisfy the following
condition, forallt € Rand T > 0,

T+T
[ EUAOR 1RO+ T IO < o 7

kelN

For convenience, we can rewrite system (1) as the following system in ¢2 x (2 fort > 7 € R:
du(t) :( —dy Apu(t) — ayu(t) + by (£)o(t) — by (1) +f1(t)>dt

+€12 (hy(t) + o (u(t — p)))dWi(t),

(18)
do(t) :( — dyAp,v(t) — a0 (t) — by (t)v(t) + b1t (t) —|—f2(t)>dt

+€zz (h(t) + ox(v(t — p)))dWk(t),
k=1

with initial date
P(1) = o = (uo,v0), P(s) = (u(s),0(s)) =8(s —7) = (¢(s —71),8(s —71)), s€(r—p7),
where ¢(t) = (u(t),v(t))", 8(s — 1) = (¢(s — 7),&(s — 7))".

Next, we prove the existence and uniqueness of the solutions for the problem (18) in the
following sense.



6 | Electron. J. Appl. Math. 2023, Vol. 1, No. 2

Definition 2.1. Let T € R, T > 0, i € L?(Q, F; 02 x £2), 9 € L2(Q, Fr; L?((—p,0), €2 x £%)).
A % x (2-valued stochastic process ¥(t) = (u(t),v(t))T, t > T — p, is called a solution of system
(18) if
(i) p € L2(Q, F; L2 ((t — p,7),£2 x £?)) and ur = ¢, v = .
(ii) ¥ is pathwise continuous on [T, o), Fr-adapted forall t > 7,9 (T) = ¢o, ¥ € L2(Q,C[t, T+
T], 0% x £2) forall T > 0.
(iii) For system (1) in £ x 2,

) =ug + / —d1Apu(s) — ayu(s) + biu®1(s)o(s) — bau(s) + f1 (s))ds

Yo 2/ (e (s) + o (u(s — p))) AW (s),
(19)
) =0 +/ — dyAp,v(s) — apv(s) — b (s)o(s) + bu®1t(s) +f2(s)>ds

taY / (e (s) + o (v(s — p)))dWi(s), P-as.
k=177

Theorem 2.2. Assume (3) and (17) hold. Then forall o € L2(Q), Fr; €% x £%),9 € L?(Q, Fr; L*((—p,0), €2 %
), system (18) has a unique solution  in the meaning of Definition 2.1,

IE( sup ng(s)ngzx,ﬂ) <K VT>0,

T<s<7t+T

where
K=K 1T T+ E ll) -+ (;b 2 + 2 d
1€ (H 0H€2><F2 H )||£2><£2 Hg(S)Hszﬁz) 5

+ / EOAG)IP + 1(6) P+ 1 () P)e),

and Ky > 0 is a constant independent of o, ¢, p, T and T.

Proof. We first prove the existence of solutions for (18) on [7, T + p|. By (15), BDG inequality we
getfor ¢, & € L?(Q), Fr; L*((—p,0), £ x £%)),

T+p X

sup Z(Tk de()D
T<t<T+p
—E( sup | [T L (ol p - v)aw(r)])
T<t<T+p
gBIE((/: ||Uk(47(t_P_T)H2dt>i)
<5+ 38( [ ot —p - ) |Par)
< 9PH5HZ+9H0¢H/ E(ll¢(t—p —7)|*)at

NM—\ I\JM—‘N\'—\

+9plI]* + 9l a]|? / (lp()]|*)dt < oo, (20)
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similarly, we have

T+p X

sup de()D
’l’<i’<T+P
T+p X
sup / L (aele- o —T)dWi(t)|)
T<t<T+p
1
<3 9P||5||2+9H0¢||/ (g [1%)dt < co. (21)

By (20)-(21), problem (18) on [T, T + p] is transformed into the following equations without
delay:

du(t) :( — dy Ay u(t) — ayu(t) + by (£)o(t) — by (£) + fl(t)>dt

Fer Y () + ot — p— 1)) dWe(t),
k=1 (22)
do(t) = ( — dyApyo(t) — apo(t) — by (£)o(t) + by (E) + fg_(t))dt

+€2Z hi(t) + 0 (E(t —p —7)))dWi(t), t € (T, T+p],

\ =

with initial conditions
u(t) =up, v(t) = vo. (23)

Then by Theorem 1.1 in [16], by conditions (3) and (17), the system (22)-(23) has a unique
solution ¥ defined on [, T + p] such that ¥ € L?(Q, C([t, T + p], £*> x (?)). Repeating this
discussion, we can extend the solution ¢ to the interval [t,c0) such that ¢ € L2(Q, C([t,T +
T], 0> x £2)) forall T > 0.

Next, we conduct uniform estimates of the solutions. Applying Ito’s formula to (18), we get

ballu(t) P+ [ [2hba(Apyu(s), () + 2aaba u(s) | + 263G u(s)), ) ds
—by |u(T) || + 2b» /:(fl(s),u(s))ds—kZblbz /;(F(u(s),v(s)),u(s))ds
Fa Y [ (o) + oxluts — ) s
k=177
aer Y [ 0ns) + el — p), u(&)WL(S), (04
and

brlfo(I + [ (2201 (4y,0(5),0(5)) + 20aby[0(5) |2 + 2P (u(s),0(5)), o(5)) | s

by [[o(7)[2 + 2By /:(fz(s),v(s))ds+2b2b1/ (G(u(s)), o(s))ds

T
0 ot
+01G Y [ () +an(ols - p) s
k=177

L ohe Y /t(hk(s) 4o (o(s — p)), 0(s) VAW (s). (25)
k=177
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By (6) and (8), we know

B( sup (ballu(r)|* +billo(r)|F) ) < B(llu(D)]* + by Jo(o) )

oty B P)s +a5'b: [ B P)ds

+bze%i/tlE(Hhk(s)+0k(u(s—p))\]2)ds+ble§i/tlE(Hhk(s)+c7k(v(s—p))||2)ds
k=1"T7 k=177

)
)

+2b2e11E< sup i/Tr<hk(s) + o (u(s —p)), u(s))dWi(s)

T<r<t | k=1

+ 2b1€21E< sup i /r<hk(s) + ox(v(s — p)), v(s))dWg(s)

T<r<t | =177

I

For the terms I; and I, in (26), by the BDG inequality, we get

L < 6b2€1IE</ Z |hk —|—O’k ( p))H2||u(s)||2de(s)dS>
< 38 ( sup b lu(IR) + 27026} L [ () + ox(uts — p) )
-1Y7

T<s<t
and
L < iE b 2) 4 70,2 [ E(|h —o)|?)d
2 < FE( sup biflo(s)[* ) +27bi€3 ) (Ilhx(s) + ox(v(s — p))[|*)ds
T<s<t k=177
By (26)-(28) and (15), we know that
o t
286,63 Y [ E(Ile(s) + on(us — p) ) ds
k=177
< 112b,2||62(t — T) + 56b2¢2 2/ (11 (s) 1)
+ 102026 el [ Ellp(s)]ds + 1120063 / E(u(s)]1?)ds,
7‘0 T
and
o) t
28616 Y [ E(Ilhe(s) +ai(o(s — p)) )ds
k=177
0
< 1126101t~ ) + 56b1ed Y- [ E(ln(s)]2)ds
k=177

0 t
s 1120l [ E6E)Pds + 12me el [ E(o(s)]P)ds
—p T

(26)

(27)

(28)

(29)

(30)

From (26) to (30), we find that there exists a positive number C; independent of ug, v, ¢, ¢, T, T
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such that forall t € [T, T+ T],
E 2 2
(sup (ballu()]? +brfo()I7))
2 2 0 2 2
< SE(baljuo 2 + i [o0]?) + C1E [ (Ip(6) 12 + 2(5)]12) s
—-P
vam [ (IO + 6 O+ 2 I )ds + T
=1
+C1 [ B( sup (Ballu(r)| + blo(r)|?)ds)

T<r<s

t
§C2+C1/

T

B( sup (ballu(r)]* + b)) ds). (1)

where C, > 0 is a finite number from (17).
By (31) and Gronwall’s lemma, we obtain, for all t € [t,7+ T| with T > 0,

E( sup (b2llu(r)[?+bullo(r)|2) ) < GO,
T<r<t
which completes the proof. O

3 Weak pullback mean random attractors

Forany T € Randt € R",let ®(t, T) be a mapping from L?(Q), Fr; (2 x () x L2(Q, Fr; L?((—p,0), £2 x
02)) to L2(Q), Friq; 02 x £2) x L?(Q), Fiyr; L2((—p,0), €2 x £2)) given by

q)(tl T) (lPO’ 1‘9) = (lp(t + TT, l/)()/ 19)/ lpf-‘r'l'('; T, 1/J01 1-9))/

for any (yo,9) € L*(Q, Fr; 0% x £2) x L?(Q, Fr; L*((—p,0), 2 x £2)), where ¢(t; T, ¢, 9) =

(u(t; T, u0,¢),

v(t; T, v, C))T is the solution of (18), and ;1 (6; T, ¥, ) = Y(t + T+ 6; T, by, ¥) for 6 € (—p,0).
Then @ is a mean random dynamical system on L2(Q), F; €2 x £%) x L*(Q, F; L*((—p,0), £* x

(?)) over the filtration {7} }1cr, see [34, Definition 2.9 |.

In this section, we discuss the existence and uniqueness of weak pullback mean random
attractors of (18). For convenience, for every T € R, we set

He = L*(Q, Fr; 02 x £%) x L2(Q, Fr; L*((—p,0), £2 x £%)).

And H: is a product Hilbert space with inner product and norm

0
(@1,60) (@2,62))yy, = Bl on) +E( [ (61(5),62(5))ds). (wn,6), (w2,62) € H,

1

2
1@, ), = (Bl ) + / (ls(s)%,2)d5) ", (w,6) € Hr.
In addition, we suppose €1, €2 in (1) are small enough such that

(el +e3) < (32)

2||acff?
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By (7) and (32), there exist constants y, 77 > 0 such that
N4 u— 2\ 4 4)|a||* (€2 + €3)eM < 0. (33)
Let B = {B(7) C H; : T € R} be a family of nonempty bounded sets such that

: UT 2 _
Jlim_eB(7)[, =0, en
where | B() 11, = sup, e, (0,6) |1, Denote by
D= {B = {B(1) C H: : T € R} : B satisfies (34)}.

We will prove that the system (18) has a unique weak D-pullback mean random attractor.
Therefore we further suppose that for every 7 € RR,

/;WMM@W+M@W+EMWWMKw, )

where u > 0 is the constant as in (33).

Lemma 3.1. Assume (3), (17), (32) and (35) hold. Then for every T € R and B = {B(t) };er € D,
there exists T = T(t,B) > p such that forall t > T,

E(ba 47 = t,u0,9) | + bal[o(7i T — £,20,) )
+ [ Blealue(si = )+ bl — £, €) s

2, 4119117

§(1+pe"f’)[ + (b2€? + b1€3)
ve [ IEIAG P IROR + X ) D], 6o

where c is a positive constant which is independent of €1, €2, t, T, ug, Vo, P, C.
Proof. Forallt > 0andr € (T —t, 7], by (24)-(25) we have
e E (ba||u(r)||* + b1 ]|o(r) %)
_ [ e E { — 2byd1 (Ap,u(s), u(s)) — 2bida(Ap,0(s),v(s)) — 2a1by||u(s)|?

—;azble(S)llz—2b%<G(u(S)),u(S)>+2b1bz< F(u(s),v(s)), u(s))
+ 2byby (G (u(s)), 0(s)) — 263 (F(u(s), v(s }ds

—HML;WMﬁ@m@MHQMﬁ;WE%&><»

w023 3 [ EE((s) + on(uls — p)IP)ds

k=177t

035 [ () +aols — p) )i
k=177t

+ e OB bl + balool?) e [ @ B u()| + bilo(s) P)ds. (37)
.
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By (6), (8) and (37), we know that

[ e ] = 2aaballus) | ~ 2azbn][o(s)? ~ 263(G (u(s), u(s) + 2oaba(F(u(s), 0(6)), u(s))

+ 262 (G(u(s),0(6) — 263 (F(u(s),0(s), 0(6)) ] ds
<20 [ e Eblu(s)|? + billo))ds,

where A = (a1 Aay) > 0.
By (37), we have

25 [ e E(f(s),u(s))ds

<2t [ (1) uts) s

<o [ Ealu(s) P+ [ bae E(fu(s) s
and

21 [ e {fals),0(s))ds

<y [ Bl P+ [ e E(lfa(s)d

By (15) and (37), we obtain

et Y- [ B (lhels) +oluts — p))|)ds
k=1""*""

(38)

(39)

(40)

s r r r
<2bpef Y [ B(Ih(s)|P)ds +4baed [ e o)ds + abaeflal? [ e E(u(s — p)[P)ds
k=177~ T ~

r—

[ 4bye?||5||2
<2ty [ B (lmo|Pyis + 2
k=17°""

(e — 7)o 4byed |

(e.“’”’ — eV(T_t))

[ 4bye?| 5|12
<23 [ B (lno))ds + 2]
k=177~

T—t

r
+4bz€%|!oc|\ze"p/ e“SlE(Hu(S)HZ)dS+4bz€%llwllze’*"/ e E([|u(s)|*)ds
T—t t

4baei 9>

=2 Y [ B(Iels)|P)ds + (e — (1)
k=177t

r 0
+4€%||0¢||26””/ e”SIE(szu(S)HZ)dS+4bz€%||w||26’*"e”“‘”/ e E(||¢p(s)[*)ds,
T—t

and
et 3 [ S E(Ihy(s) + aclols — o))
k=177t

(et — et T=H))

S 4262
<2y [ B (ln|s + ]
k=1~

r 0
43l [ e E(brllo(s)]P)ds + 4bre3 alPerer 0 [ e (| (s) )
T—t

"R E(||u(s) [2)ds

(41)

S. (42)
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From (37) to (42), we have
e E(bal[u(r)|[* + by [[o(r)|?) < e TVE (b2 |uo]|* + bl oo |*)

1 r ol r s
—|—;7/T teVSIE(bZHﬁ(S)HZ+b1||f2(s)||2)ds+(2b2€%+2b16%) Z/ teV E (||l (s)||*)ds
) L/
2 0
(tact + 016 210 o — o) st a0 [ oo (lo(e) )

0
+ b3 et et 70 / e“E([|S(s)|*)ds

+ ('7+V—2/\+4H“Hz(€%+€§)€”p)/ EE(b2[u(s)|* + ballo(s) |*)ds. (43)
By (33) and (43), for any r € (T —t, 7], we get
e E (b2 |u(r)|[* + bal|o(r)[?) < e IE (b2 luo||* + bal|vo|*)

1 r o r s
o [ P EIAGE + 0lf6))ds + (2haet +20e) 1 [ e E(lhe(s)]?)ds
T— k=1"""

2 0
+ (2t + ) U @ = ) sttt [ o (lg(s) P

0
+ b1 e e [ o2 |7)ds

which implies that forall r € (1 — ¢, 7],

E(b2||u(r;T —t,u0,9)|* + brllo(r; T — t,00,8) %)
< e EIE b lug|* + b oo )

o [ Bl A+ bl ) )
+ (2b2€7 4 2b1€3) Z/ E(||hx(s)||*)ds

4)9]2

0
+ (b2ef + b €3) +4bz€%llﬂcllze"p€’*(77t”)/ E([[¢(s)]|*)ds
-

0
+dbe3|a|Peret T / e E([|S(s) %) ds. (44)

Form (44), we find

E(bo||u(t; T — t,u0,9)|1* + billo(T; T — t,00,0)|I)
< e ME(baluo|* + brlvo]?)

1 T
+ﬁ _te’*(s’”lE(szfl(S)Hz+b1!|fz(5>||2)ds
+ (2b2€7 + 2D €3) Z/ e E(|| Iy (s)||*)ds
k=177t
2 2 4H5H2 2 2 10 ,—pit 0 2
+ (b2€1 + b1€3) i + 4bset|a|["etPe E([|¢(s)[|")ds
-p

0
+anialPerne [ E(6(s)|P)ds, (45)
-
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and we have, for t > p,

sup E(ballu(r;T —t,uo,@)||> + ballo(r; T — t, 00, &)
T—p<r<t
< «‘f”("‘”ﬂi(bzHMoH2 + b [|vo|?)
ehP

+ 5 [ OB @IAGI bl P)s

00 T
+ @b +20e3)e Y [ e IE((s) ) ds
k=17T—F

4/5||?
+(bze%+ble§) 19]

0
+dbactaPe %0 [ E(lp(s)])ds
—p
0
+ane e [ () |P)ds. (46)
-p

By (45)-(46), we get that for t > p,

E(ba|lu(t; T —t,uo, ¢)|I* + biflo(ti T — t,00,) |1?)

+ | E(ballu(s; T~ tuo, )P + brflo(s; T — t,00,8)|)ds

—p
< (14 pe) [T E bz o2 + by oo )
1 T
o _teMS*ThE(bz\rfl(s)HZ + bl fa(s)]12) s
: 2y 24192
+ (2bye? + 2b1€3) Z E(||hk(s)]|?)ds + (baeT + br€3) .

0
+ 4 a0 [ p]E(Ilsb(S)Hz)dS+4b1€§||0¢||2€”(p_t) /| EUEE)Pas) @)

For the first term and the last two terms on the right-hand side of (47), by (uo, ¢), (vo, ) €
B(T —t) we have

0
e ME (ba[uol|* + b1 [|oo]|?) + 4bsef ||| e~ /pIE(Hd)(S)IIZ)dS

0
+anialPe et [ E(E(s)2)ds
Jp
< (max{by, ba}e " + (bae? + bred)4||a|?e =) T B(x — 1)} =0,  (48)

as t — oo. Therefore, there exist T = T(t,B) > p and a positive number ¢ such that for all
t>T,

E(ba (7 = 100, ¢)|2 + bi[0(T: T — £,20,0)|2)
+ [ Bt Lo ) + Bl T b, v0,2) P)ds
ALl

< (1 + pe) [1 + (0262 + by 2)
T
o[ EIEAGIE+ IR0+ Z () 7)ds .

which completes the proof. O
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Next, we show the main result of this section.

Theorem 3.2. Assume (3), (17), (32) and (35) hold. Then the mean random dynamical system ®
related to (18) has a unique weak D-pullback mean random attractor A = {A(t) : T € R} € Din
L?(Q, F; 02 x £2) x L?(Q), F; L*((—p,0), 02 x £2)) over (O, F,{Fi}ter, P); this is, (i) A(K) isa
weakly compact subset of L2(Q), Fr; €% x (%) x L*(Q, Fr; L*((—p,0), €2 x £2)) for every T € R. (ii)
A is a weakly D-pullback attracting set of ®. (iii) A is the minimal element of D with properties (i) and
(ii); this is, if K = {K(7) : T € R} € D satisfies (i) and (ii), then A(t) C K(7) forany T € R.

Proof. For every T € R, let us define
M(7) = {(w,6) € He : [ (w,0) I}, < R(D)},
where

2, 41912
K

re [ IEIAG P IR+ X ) Pds],

R(7) = (14 petf) [1 + (by€? + bre3) ———

where p > 0 is the same number as in (33). Because M(7) is a bounded closed convex subset of
H, it is weakly compact in H-.
Furthermore, by (35) we obtain

: UT 2 1; UT —
lim_ e T[M(7) [}, = lim e""R(7) =0,

consequently, M = {M(7) : T € R} € D.
In addition, by Lemma 3.1, we find that for each T € R and B = {B(t) }+er € D, there exists
T = T(t,B) > p such that forany t > T,

®(t, T — t)(B(t — 1)) C M(7).

Therefore, M is a weakly compact D-pullback absorbing set of ®. Then by [34, Theorem
2.13], @ has a unique weak D-pullback mean random attractor A € D in L?(Q), F; (? x (%) x
LZ(Q,]-"; L?((—p,0), % x 62)).
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