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Abstract
In this paper, we investigate global existence, uniform decay, and blow-up of solutions for a class of
system of Petrovsky equations containing nonlinear damping and sources. By introducing a family of
potential wells, we not only obtain the invariant sets and vacuum isolating of solutions but also give
some threshold results of global existence and nonexistence of solutions. Furthermore, by using energy
techniques, we also establish certain qualitative estimates for solution.
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1 Introduction

Let Ω ⊂ Rn be an open bounded domain with a smooth boundary ∂Ω. In this paper, depending
on suitable conditions of the initial datum (u0, v0, u1, v1) ∈

[
H2

0 (Ω)
]2 ×

[
L2 (Ω)

]2, we are
interested in both finite time blow-up solutions and solutions which exist globally in time of
the following system of Petrovsky equations

utt + ∆2u + |ut|q1−2ut = f1 (u, v) , (x, t) ∈ Ω × (0, ∞) , (1)

vtt + ∆2v + |vt|q2−2vt = f2 (u, v) , (x, t) ∈ Ω × (0, ∞) , (2)

associated with homogeneous Dirichlet boundary conditions

u (x, t) = v (x, t) = ∂νu (x, t) = ∂νv (x, t) = 0, (x, t) ∈ ∂Ω × (0, ∞) , (3)

and supplemented with the following initial conditions

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω, (4)

where
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i. the operator ∆2 is a bi-Laplace operator, which given by

∆2u := ∆ (∆u) = ∑
ℓ∈Zn

+, |ℓ|=2

m!
ℓ!

∂2ℓu = ∑
ℓ∈Zn

+, |ℓ|=2

m!
ℓ1! · · · ℓn!

∂4u

∂x2ℓ1
1 · · · ∂x2ℓn

n
;

ii. the vector ν denotes the unit normal vector pointing toward the exterior of Ω, and ∂ν

stands by for normal derivative;
iii. the nonlinearities f1, f2 are interior sources, which satisfy certain conditions specified
later.

Let us begin by introducing the physical significance and mathematical meaning of the so-called
bi-Laplace operator ∆2. This operator appears naturally for the vibration of a clamped plate in
the classical elastic mechanics. In order to study the long time behavior of the roadway of a
suspension bridge, in [1], Runzhang Xu et al. considered the following nonlinear wave equation
with bi-Laplace operator

utt + ∆2u + au + µ|ut|q−2ut = |u|p−2u, (x, t) ∈ (0, π)× (−ℓ, ℓ) , t ∈ (0, ∞) ,

associated with free-type boundary conditions{
u (0, y, t) = uxx (0, y, t) = u (π, y, t) = uxx (π, y, t) , y ∈ (−ℓ, ℓ) ,
uyy (x,±ℓ, t) + σuxx (x,±ℓ, t) = uyyy (x,±ℓ, t) + (2 − σ) uxxy (x,±ℓ, t) = 0, x ∈ (0, π) ,

and initial data
u (x, y, 0) = u0 (x) , ut (x, y, t) = u1 (x) ,

where µ > 0, 2 < q < p < ∞, σ ∈
(
0, 1

2

)
. By using potential well method, the authors gave a

threshold result for the global existence and blow-up in finite time. Furthermore, a certain decay
estimate also obtained by using Nakao inequality. Not only appear in evolution equations, but
also for steady state equation. For example, in [2], Xiaotian Hao considered the eigenvalue
problem L2

νu = Γu, x ∈ Ω,

u =
∂u
∂n

= 0, x ∈ ∂Ω,

where n denotes the outward unit normal to the boundary, and Lν is Xin-Laplacian operator.
First, the authors proved the existence of the eigenvalues of Xin-Laplacian operator and then
estimated the spectrum gap of these eigenvalues.

On the other hand, it is well known that nonlinear wave equations can be used to describe a
variety of problems in physics, engineering, chemistry, material science and other sciences. The
study of nonlinear wave equations has also great significance in mathematical analysis [3–8]. In
[5], Messaoudi consider the fourth-order wave equation

utt + ∆2u + |ut|q−2ut = |u|p−2u, (x, t) ∈ Ω × (0, ∞) .

First, by using standard Faedo-Galerkin method, the author established the local existence and
uniqueness of the weak solution. Later, he showed the solution blows-up in finite time if q ⩾ p,
and the solution exists globally if q < p. That means if the damping term dominates the source
term, then the solution may exist globally, and vice versa. However, no decay rate of the global
solution is given and no blow-up result is discussed for the initial energy being nonnegative. In
[6], the authors considered the following system of Petrovsky equations{

utt + ∆2u + |ut|q−2ut = f1 (u, v) , (x, t) ∈ Ω × (0, ∞) ,

vtt + ∆2v + |vt|q−2vt = f2 (u, v) , (x, t) ∈ Ω × (0, ∞) ,
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where

f1 (u, v) = α1|u + v|p−2 (u + v) + α2|u|
p−4

2 u|v|
p
2 , f2 (u, v)

= α1|u + v|p−2 (u + v) + α2|v|
p−4

2 v|u|
p
2 .

By using potential well method as well as some useful differential inequality, the authors in
this paper the global existence, decay and blow-up of solutions of this problem. To our best
knowledge, despite the fact that we have numerous literature that consider the system of
wave or heat equations, the previous authors just considered some specific nonlinear terms.
The interested reader is refered to Remark 2.4 for more examples. We are also aware of
the important role of considering the system of two equations rather than a single equation,
especially considering the coupling effects and interactions of the nonlinear terms, at least,
from mathematical point of view. But so far we have no standard method to circumvent
this difficulty, the main reason is we cannot simply solve this problem by parallelizing the
method for a single equation due to the interactions in the nonlinearities. At least, we need to
answer some fundamental questions. First of all, we realize that we are still unable to handle
all but the most important coupling nonlinearities. So we need decide which nonlinearities
can be prioritized. Although these nonlinear features have a very clear physical and applied
background, we must be honest to say that these particular nonlinear cases also bring a lot
of convenience to us for constructing the variational structure and conducting corresponding
analysis. Recently, in [9], the authors introduced a new assumption to dealing with more
nonlinearities which considered before. We will introduce and discuss this assumption in
Section 2. We also note that, in this manuscript, the nonlinear terms also contain two nonlinear
weak damping terms. These terms usually describe the friction during the process of motion.
The interested reader is referred to [10] for more details. The rest of this paper is organized as
follows.

i. In Section 2, we prepare some notations, preliminaries. We also introduce a new assump-
tion for source terms;
ii. In Section 3, we investigate the stationary problem under the new assumption. We also
introduce a family of potential wells and consider the vacuum isolating phenomena of
solution for Problem (1)-(4);

iii. In Section 4, by applying the concept of the family of potential wells, we prove the global
existence and finite time blow up of solutions with subcritical initial energy, i.e., E (0) < d,
which is shown in Theorems 4.1, 4.2, 4.3 and 4.8;

iv. In Section 5, we extend in parallel the results in subcritical initial energy level to critical
initial energy level, i.e., E (0) = d, which are shown in Theorems 5.3 and 5.4;
v. In Section 6, at arbitrarily high initial energy level, i.e., E (0) > d, we give the sufficient
conditions for blow-up in finite time. The result is displayed in Theorems 6.4.

2 Notation and primary results

First of all, let us recall a few preliminaries about the notations and some useful lemmas.
Throughout this paper, we use the conventional notation Lp (Ω), with 1 ⩽ p ⩽ ∞, for the usual
Lebesgue space equipped with ∥·∥Lp(Ω) norm. For simplicity, we write ∥·∥p for ∥·∥Lp(Ω), we
also denote the inner product on the Hilbert space L2 (Ω) by ⟨·, ·⟩. We also need to introduce
the Sobolev space

H2
0 (Ω) =

{
u ∈ H2 (Ω) : u = ∂νu = 0

}
.
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By applying Poincaré inequality, we can easily show that H2
0 (Ω) is a Hilbert space when

endowed with the inner product

⟨u, v⟩H2
0
= ⟨∆u, ∆v⟩ =

∫
Ω

∆u (x)∆v (x)dx, ∀u, v ∈ H2
0 (Ω) .

This inner product induces a norm

∥u∥H2
0
=
√
⟨u, u⟩H2

0
= ∥∆u∥2, ∀u ∈ H2

0 (Ω) ,

which is equivalent to the usual norm ∥·∥H2 . Moreover, we have the following Sobolev Embed-
ding Inequality for this case as follows.

Lemma 2.1. Let Ω ⊂ Rn be an open bounded domain with a smooth boundary ∂Ω. Suppose that
2 < p < 2∗∗, where 2∗∗ = 2n

n−4 when n ⩾ 4, or 2∗∗ = ∞ if n ∈ {1, 2, 3}. Then, we have the embedding
H2

0 (Ω) ↪→ Lp (Ω) is compact. Furthermore, we have the following inequality

∥u∥p ≲ ∥∆u∥2, ∀u ∈ H2
0 (Ω) . (5)

Before going further, some assumptions on the nonlinear sources will be needed. We are
mainly interested in higher order nonlinearities, as described in the following assumption.

Assumption 2.2. Let f1, f2 ∈ C1 (R2) satisfying the following conditions:

i. There exists a constant p ∈ (2, 2∗∗) such that

|∇ fi (u, v)| ≲ 1 + |u|p−2 + |v|p−2, ∀i ∈ {1, 2} , (u, v) ∈ R2; (6)

ii. The vector field f = ( f1, f2) : R2 −→ R2 is a conservative vector field. That means there
exists a potential function F : R2 → R such that

∇F (u, v) = f (u, v) = ( f1 (u, v) , f2 (u, v)) , ∀ (u, v) ∈ R2; (7)

iii. The potential function F is homogeneous degree p. Namely, we have

F (λu, λv) = λpF (u, v) , ∀ (u, v) ∈ R2, λ ∈ (0, ∞) ; (8)

iv. The potential function F is positive on R2 \ {0}.

Remark 2.3. Since the potential function F is homogeneous degree p, then it is easy to check
that

f (u, v) · (u, v) = ∇F (u, v) · (u, v) = pF (u, v) , ∀ (u, v) ∈ R2. (9)

Furthermore, we also obtain two functions f1 and f2 are homogeneous degree p − 1. On the
other hand, for any (u, v) ∈ R2, we have

| fi (u, v)| =
∣∣∣∣ fi (0, 0) +

∫ 1

0
∇ fi (su, sv) · (u, v)ds

∣∣∣∣
≲ 1 +

∫ 1

0
|∇ fi (su, sv)| |(u, v)|ds

≲ 1 +
(
|u|p−2 + |v|p−2

)
(|u|+ |v|)

≲ 1 + |u|p−1 + |v|p−1,
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for all (u, v) ∈ R2 and i ∈ {1, 2}. Hence, the homogeneity of three functions f1, f2 and F enable
us to verify that there exist two positive constants c2 and C2 such that

| fi (u, v)| ⩽ c2

(
|u|p−1 + |v|p−2

)
,

F (u, v) ⩽ C2
(
|u|p + |v|p

)
, ∀i ∈ {1, 2} , (u, v) ∈ R2. (10)

Finally, for any (u, v) ∈ R2, it follows from (8) that

F (u, v) =
(
u2 + v2) p

2 F
(

u√
u2 + v2

,
u√

u2 + v2

)
≳
(

min
(u,v)∈R2:u2+v2=1

F (u, v)
) (

|u|p + |v|p
)

.

Therefore, there exists a positive constant C1 such that

C1
(
|u|p + |v|p

)
⩽ F (u, v) , ∀ (u, v) ∈ R2. (11)

Remark 2.4. We also note that Assumption 2.2 contains a large class of nonlinear source, which
considered in the previous paper [5, 6, 11–13]. Indeed, by direct calculation, it is easy to verify
that the following nonlinear sources

f1 (u, v) = |u|p−2u + |v|
p
2 |u|

p
2 −2, f2 (u, v) = |v|q−2v + |u|

p
2 |v|

p
2 −2, (12)

or

f1 (u, v) = α1|u + v|p−2 (u + v) + α2|u|
p−4

2 u|v|
p
2 , f2 (u, v)

= α1|u + v|p−2 (u + v) + α2|v|
p−4

2 v|u|
p
2 , (13)

or

f1 (u, v) = |u + v|p−2 (u + v) + |u − v|p−2 (u − v) , f2 (u, v)

= |u + v|p−2 (u + v)− |u − v|p−2 (u − v) , (14)

where p, α1, α2 are given parameters satisfying some restrictions.

Next, we give the precise definition of a weak solution of Problem (1)-(4).

Definition 2.5. A coupled function (u, v) is called a weak solution of the Problem (1)-(4) on
(0, T) if

(u, v) ∈ C
(
[0, T] ;

[
H2

0 (Ω)
]2
)
∩ C1

(
[0, T] ;

[
L2 (Ω)

]2
)

, (15)

with
ut ∈ Lq1 (0, T; Lq1 (Ω)) , vt ∈ Lq2 (0, T; Lq2 (Ω)) , (16)

and (u, v) satisfies (1)-(4) in the following sense:

i. (u, v) is a distributional solution, i.e.,

d
dt
〈
u′ (t) , w1

〉
+ ⟨∆u (t) , ∆w1⟩+

〈∣∣u′ (t)
∣∣q1 u′ (t) , w1

〉
= ⟨ f1 (u (t) , v (t)) , w1⟩ , (17)

and

d
dt
〈
v′ (t) , w2

〉
+ ⟨∆v (t) , ∆w2⟩+

〈∣∣v′ (t)∣∣q2 v′ (t) , w2

〉
= ⟨ f2 (u (t) , v (t)) , w2⟩ , (18)

for all test function (w1, w2) ∈
[
H2

0 (Ω)
]2 and t ∈ (0, T);
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ii. (u, v) fulfills the initial datum

u (0) = u0, v (0) = v0, u′ (0) = u1, v′ (0) = v0. (19)

We have the following theorem about the local existence and uniqueness of a weak solution.

Theorem 2.6. Let Assumption 2.2 be in force, and 2 < p < 2∗∗, q1 ⩾ 2, q2 ⩾ 2. Then, for any
(u0, v0, u1, v1) ∈

[
H2

0 (Ω)
]2 ×

[
L2 (Ω)

]2, Problem (1)-(4) admits a unique weak solution (u, v) on
(0, T∗) with T∗ > 0 small enough.

Moreover, if we denote T∞ is a maximal existence time of the solution (u, v) for the Problem (1)-(4),
the following alternatives hold

i. If T∞ = ∞, then we say that the solution of Problem (1)-(4) is global;
ii. If T∞ < ∞, then

lim
t↑T∞

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2 + ∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
= ∞, (20)

and we say that the solution of Problem (1)-(4) blows up in finite time, and that T∞ = ∞ is the
blow-up time.

Remark 2.7. In order to ensure the local existence of the weak solution, in what follows, we
always assume that Assumption 2.2 fulfills, and (u0, v0, u1, v1) ∈

[
H2

0 (Ω)
]2 ×

[
L2 (Ω)

]2 to
ensure the local Hadamard well-posedness result for our model.

3 Stationary problem, potential well setting, invariant sets and vacuum isolating
of solutions

3.1 Stationary problem, potential well setting, and a family of potential wells

Stationary solutions of Problem (1)-(4) solve the following nonlinear elliptic problem
∆2u = f1 (u, v) , x ∈ Ω,

∆2v = f2 (u, v) , x ∈ Ω,
u (x) = v (x) = ∂νu (x) = ∂νv (x) = 0, x ∈ ∂Ω.

(21)

Problem (21) may be investigated with critical-point theory. For this purpose, we consider the
potential energy functional J :

[
H2

0 (Ω)
]2 −→ R, and Nehari functional I :

[
H2

0 (Ω)
]2 −→ R

given by

J (u, v) :=
1
2

(
∥∆u∥2

2 + ∥∆v∥2
2

)
−
∫

Ω
F (u (x) , v (x))dx, (22)

and
I (u, v) :=

(
∥∆u∥2

2 + ∥∆v∥2
2

)
− p

∫
Ω

F (u (x) , v (x))dx. (23)

It is clear that J, I ∈ C1
([

H2
0 (Ω)

]2; R
)

, and critical points of J are (weak) solutions of Problem
(21). Finally, it follows from (22) and (23) that J and I posses the following identity

J (u, v) =
p − 2

2p

(
∥∆u∥2

2 + ∥∆v∥2
2

)
+

I (u, v)
p

, ∀ (u, v) ∈
[
H2

0 (Ω)
]2

. (24)

Next, we proceed now to establish the fundamental properties of the potential energy
functional J and the Nehari functional I.

Lemma 3.1. Let (ϕ, ψ) ∈
[
H2

0 (Ω)
]2. Then
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i. lim
λ↓0

J (λϕ, λψ) = 0, and lim
λ→∞

J (λϕ, λψ) = −∞;

ii. On the interval (0, ∞), there exists a unique constant λ∗ :=
(

∥∆ϕ∥2
2+∥∆ψ∥2

2
p
∫

Ω F(u(x),v(x))dx

) 1
p−2

> 0 such

that d
dλ J (λϕ, λψ)

∣∣∣
λ=λ∗

= 0. Moreover, the function λ 7−→ J (λϕ, λψ) is strictly increasing on

(0, λ∗), strictly decreasing on (λ∗, ∞), and takes the maximum at λ = λ∗;
iii. I (λϕ, λψ) > 0 for all λ ∈ (0, λ∗), I (λϕ, λψ) < 0 for all λ ∈ (λ∗, ∞), and I (λ∗ϕ, λ∗ψ) = 0.

Proof of Lemma 3.1. First, by recalling the definition of functional J and (7), we can easily obtain

J (λϕ, λψ) =
λ2

2

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
− λp

∫
Ω

F (ϕ (x) , ψ (x))dx > 0, ∀λ ∈ (0, ∞) .

Since (ϕ, ψ) ∈
[
H2

0 (Ω)
]2 \ {(0, 0)}, then we have

∫
Ω F (ψ (x) , ψ (x))dx > 0. Consequently,

lim
λ↓0

J (λϕ, λψ) = 0, and lim
λ→∞

J (λϕ, λψ) = −∞.

Next, a direct calculation gives us

d
dλ

J (λϕ, λψ) = λ
(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
− pλp−1

∫
Ω

F (ϕ (x) , ψ (x))dx = 0 ⇐⇒ λ = λ∗.

Hence, there exists a unique λ∗ =

(
∥∆ϕ∥2

2+∥∆ψ∥2
2

p
∫

Ω F(u(x),v(x))dx

) 1
p−2

> 0 such that d
dλ J (λϕ, λψ)

∣∣∣
λ=λ∗

= 0.

As a direct consequence of this fact, we have the function λ 7−→ J (λϕ, λψ) is strictly increasing
on (0, λ∗), strictly decreasing on (λ∗, ∞), and takes the maximum at λ = λ∗.

Finally, by recalling (7) and (23), for any (ϕ, ψ) ∈
[
H2

0 (Ω)
]2 and λ ∈ (0, ∞), we have

I (λϕ, λψ) = λ2
(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
− pλp

∫
Ω

F (ϕ (x) , ψ (x))dx = λ
d

dλ
J (λϕ, λψ) .

Accordingly, I (λϕ, λψ) > 0 for all λ ∈ (0, λ∗), I (λϕ, λψ) < 0 for all λ ∈ (λ∗, ∞), and
I (λ∗ϕ, λ∗ψ) = 0. Lemma 3.1 is proved completely.

Lemma 3.2. Put

Sp := sup
(ϕ,ψ)∈[H2

0 (Ω)]
2\{(0,0)}

(
∥ϕ∥p

p + ∥ψ∥p
p

) 1
p√

∥∆ϕ∥2
2 + ∥∆ψ∥2

2

> 0.

Let (ϕ, ψ) ∈
[
H2

0 (Ω)
]2, then the following statements fulfill:

i. If 0 < ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 <

(
1

pC2Sp
p

) 2
p−2

, then I (ϕ, ψ) > 0;

ii. If I (ϕ, ψ) < 0, then ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 >

(
1

pC2Sp
p

) 2
p−2

;

iii. If I (ϕ, ψ) = 0 and (ϕ, ψ) ̸= (0, 0), then ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 ⩾
(

1
pC2Sp

p

) 2
p−2

.

Proof of Lemma 3.2. First, by using (10), we have the following estimate∫
Ω

F (ϕ (x) , ψ (x))dx ⩽ C2

(
∥ϕ∥p

p + ∥ψ∥p
p

)
⩽ C2Sp

p

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

) p
2
, ∀ (ϕ, ψ) ∈

[
H2

0 (Ω)
]2

.



36 | Electron. J. Appl. Math. 2023, Vol. 1, No. 2

Thus, we obtain

I (ϕ, ψ) ⩾

[
1 − pC2Sp

p

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

) p−2
2

] (
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
, ∀ (ϕ, ψ) ∈

[
H2

0 (Ω)
]2

.

Hence,

i. If 0 < ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 <

(
1

pC2Sp
p

) 2
p−2

, then I (ϕ, ψ) > 0;

ii. If I (ϕ, ψ) < 0, then ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 >

(
1

pC2Sp
p

) 2
p−2

;

iii. If I (ϕ, ψ) = 0 and (ϕ, ψ) ̸= (0, 0), then ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 ⩾
(

1
pC2Sp

p

) 2
p−2

.

Lemma 3.2 is proved.

Next, we define the Nehari manifold

N :=
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: I (ϕ, ψ) = 0
}
\ {(0, 0)} . (25)

According to Lemma 3.1, it is clear that N ̸= ∅. We also need to introduce the inside and
outside part of Nehari manifold as follows

N+ :=
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: I (ϕ, ψ) > 0
}
∪ {(0, 0)} ,

N− =
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: I (ϕ, ψ) < 0
}

.

Moreover, as a direct consequence of the identity (24), we have the functional J coercive on the
Nehari manifold N . Hence, we can define the depth of potential well or the so-called mountain
pass level

d := inf
(ϕ,ψ)∈N

J (ϕ, ψ) . (26)

Actually, we can show that d is attained by some (Φ, Ψ) ∈ N , which is a nontrivial critical point
of J on

[
H2

0 (Ω)
]2 \ {(0, 0)}. Therefore, there exists a solution to stationary problem associated

with Problem (1)-(3).

Lemma 3.3. The following statements hold:

i. d = inf
(ϕ,ψ)∈[H2

0 (Ω)]
2\{(0,0)}

sup
λ∈(0,∞)

J (λϕ, λψ);

ii. d has a positive lower bound. In particular, we have

d ⩾
p − 2

2p

(
1

pC2Cp
∗

) 2
p−2

;

iii. There exists an extremal of the variation problem (26). More precisely, there is a couple function
(Φ, Ψ) ∈ N such that J (Φ, Ψ) = d. Furthermore, (Φ, Ψ) is a weak solution of Problem (21), and
satisfies

∂J
∂ϕ

(Φ, Ψ)w1 =
∂J
∂ψ

(Φ, Ψ)w2 = 0, ∀ (w1, w2) ∈
[
H2

0 (Ω)
]2

.
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Proof of Lemma 3.3. First, with (ϕ, ψ) ∈
[
H2

0 (Ω)
]2 \ {(0, 0)}, it follows from Lemma 3.1 that

there exists a unique λ∗ > 0 satisfies

sup
λ∈(0,∞)

J (λϕ, λψ) = J (λ∗ϕ, λ∗ψ) . (27)

By utilizing Lemma 3.1, we deduce that (λ∗ϕ, λ∗ψ) ∈ N . Combining this with (27) entails

sup
λ∈(0,∞)

J (λϕ, λψ) = J (λ∗ϕ, λ∗ψ) ⩾ d.

Thus, we have
inf

(ϕ,ψ)∈[H2
0 (Ω)]

2\{(0,0)}
sup

λ∈(0,∞)

J (λϕ, λψ) ⩾ d. (28)

On the other hand, by applying Lemma 3.1, we have sup
λ∈(0,∞)

J (λϕ, λψ) = J (ϕ, ψ) for any

(ϕ, ψ) ∈ N . Hence, one has

inf
(ϕ,ψ)∈[H2

0 (Ω)]
2\{(0,0)}

sup
λ∈(0,∞)

J (λϕ, λψ) ⩽ inf
(ϕ,ψ)∈N

sup
λ∈(0,∞)

J (λϕ, λψ) = inf
(ϕ,ψ)∈N

J (ϕ, ψ) = d. (29)

Therefore, it follows from (28) and (29) that

d = inf
(ϕ,ψ)∈[H2

0 (Ω)]
2\{(0,0)}

sup
λ∈(0,∞)

J (λϕ, λψ) .

Next, by making use Lemma 3.2 and (24), for any (ϕ, ψ) ∈ N , we have

J (ϕ, ψ) =
p − 2

2p

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
⩾

p − 2
2p

(
1

pC2Sp
p

) 2
p−2

.

Thus, as an immediate consequence of this fact, we obtain

d = inf
(ϕ,ψ)∈N

J (ϕ, ψ) ⩾
p − 2

2p

(
1

pC2Sp
p

) 2
p−2

.

In order to prove the existence of a stationary solution, we will use the direct method. Let
{(ϕn, ψn)}∞

n=1 ⊂ N such that lim
n→∞

J (ϕn, ψn) = d. Recalling the identity (24), we deduce that

the sequence {(ϕn, ψn)}∞
n=1 is bounded on

[
H2

0 (Ω)
]2. Since the embedding H2

0 (Ω) ↪→ Lp (Ω)
is compact and H2

0 (Ω) is a Hilbert space, without loss of generality, we may assume that there
exists (Φ, Ψ) ∈

[
H2

0 (Ω)
]2 such that

ϕn → Φ weakly in H2
0 (Ω) , ψn → Ψ weakly in H2

0 (Ω) ,
ϕn → Φ, ψn → Ψ strongly in Lp,
ϕn (x) → Φ (x) , ψn (x) → Ψ (x) for a.e. x ∈ Ω.

Thus, by applying Lebesgue Dominate Convergence Theorem, one can deduce that

lim
n→∞

∫
Ω

F (ϕn (x) , ψn (x))dx =
∫

Ω
F (Φ (x) , Ψ (x))dx.
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By using the weak lower semicontinuity of the map H2
0 (Ω) ∋ u 7−→ ∥∆u∥2

2, it may be conclude
that

J (Φ, Ψ) =
1
2

(
∥∆Φ∥2

2 + ∥∆Ψ∥2
2

)
−
∫

Ω
F (Φ (x) , Ψ (x))dx

⩽ lim inf
n→∞

[
1
2

(
∥∆ϕn∥2

2 + ∥∆ψn∥2
2

)
−
∫

Ω
F (ϕn (x) , ψn (x))dx

]
= lim inf

n→∞
J (ϕn, ψn) = d,

On the other hand, since {(ϕn, ψn)}∞
n=1 ⊂ N , we have (ϕn, ψn) ̸= (0, 0) and I (ϕn, ψn) = 0 for

all n ∈ N. By appealing Lemma 3.2, we can easily deduce from (23) that

p
∫

Ω
F (ϕn (x) , ψn (x))dx = ∥∆ϕn∥2

2 + ∥∆ψn∥2
2 ⩾

(
1

pC2Sp
p

) 2
p−2

, ∀n ∈ N.

This fact permits us to verify that

∫
Ω

F (Φ (x) , Ψ (x))dx ⩾
1
p

(
1

pC2Sp
p

) 2
p−2

> 0.

And this fact implies (Φ, Ψ) ∈
([

H2
0 (Ω)

]2
)
\ {(0, 0)}. With the same argument, we can see

that
I (Φ, Ψ) ⩽ lim inf

n→∞
I (ϕn, ψn) = 0.

Thus, what is left is to show that I (Φ, Ψ) = 0. Arguing by contradiction, suppose that
I (Φ, Ψ) < 0. Thus, by using Lemma 3.1, there exists λ∗ < 1 such that I (λ∗Φ, λ∗Ψ) = 0.
Therefore, we have

d ⩽ J (λ∗Φ, λ∗Ψ) =
(p − 2) λ2

∗
2p

(
∥∆Φ∥2

2 + ∥∆Ψ∥2
2

)
<

p − 2
2p

(
∥∆Φ∥2

2 + ∥∆Ψ∥2
2

)
⩽ lim inf

n→∞

p − 2
2p

(
∥∆ϕn∥2

2 + ∥∆ψn∥2
2

)
= lim inf

n→∞
J (ϕn, ψn) = d.

This is impossible, so I (Φ, Ψ) = 0, and this fact eventually leads to (Φ, Ψ) ∈ N and J (Φ, Ψ) =
d.

In order to conclude this proof, we claim that if J (Φ, Ψ) = d and (Φ, Ψ) ∈ N , then (Φ, Ψ)
is a weak solution of Problem (21). By the definition of the depth of potential well d, we have
J (Φ, Ψ) = min

(ϕ,ψ)∈N
J (ϕ, ψ). Thanks to Lagrange multiplier theorem, there exists a constant h̄

such that

∇J (Φ, Ψ) (w1, w2) = h̄∇I (Φ, Ψ) (w1, w2) , ∀ (w1, w2) ∈
[
H2

0 (Ω)
]2

. (30)

where ∇J (Φ, Ψ) , ∇I (Φ, Ψ) ∈
[
H−2 (Ω)

]2 be the Fréchet derivative of J and I at (Φ, Ψ), respec-
tively. By choosing (w1, w2) = (Φ, Ψ) in (30), and noting that ∇J (Φ, Ψ) (Φ, Ψ) = I (Φ, Ψ) = 0.
Then we obtain h̄∇I (Φ, Ψ) (Φ, Ψ) = 0. On the other hand, a direct computation yields

∇I (Φ, Ψ) (Φ, Ψ) = p (2 − p)
∫

Ω
xF (Φ (x) , Ψ (x))dx < 0.
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Therefore, we have h̄ = 0. Hence, it follows from (30) that

∇J (Φ, Ψ) (w1, w2) = 0, ∀w1, w2 ∈ H2
0 (Ω)

or
∂J
∂ϕ

(Φ, Ψ)w1 =
∂J
∂ψ

(Φ, Ψ)w2 = 0, ∀w1, w2 ∈ H2
0 (Ω) .

The above display enables us to deduce that (Φ, Ψ) is weak solution of Problem (21). This
completes the proof of Lemma 3.1.

Remark 3.4. We introduce the set of all stationary solutions of Problem (1)-(4) by

S =

{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

:
∂J
∂ϕ

(ϕ, ψ)w1 =
∂J
∂ψ

(ϕ, ψ)w2 = 0, ∀ (w1, w2) ∈
[
H2

0 (Ω)
]2
}

,

and with ℓ ∈ {0} ∪ [d, ∞), we define the set

Sℓ =
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: J (ϕ, ψ) = ℓ
}

.

In order to state as well as prove sharp estimates for the weak solution of Problem (1)-(4),
we need to introduce a family of potential wells, the outside set of the corresponding potential
well sets, and give some properties of them. Then, the invariant sets, and the vacuum isolating
of solutions for Problem (1)-(4) are also discussed, in the next subsection. For this purpose, with
δ > 0, we define

Iδ (ϕ, ψ) := δ
(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
−
∫

Ω
F (ϕ (x) , ψ (x))dx, ∀ (ϕ, ψ) ∈

[
H2

0 (Ω)
]2

, (31)

and

r (δ) :=

(
δ

pC2Sp
p

) 2
p−2

. (32)

The following lemma is given to establish the relations between the sign of Iδ and ∥ϕ∥2
a + ∥ψ∥2

b.

Lemma 3.5. Let (ϕ, ψ) ∈
[
H2

0 (Ω)
]2. Then

i. If 0 < ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 < r (δ), then Iδ (ϕ, ψ) > 0;
ii. If Iδ (ϕ, ψ) < 0, then ∥∆ϕ∥2

2 + ∥∆ψ∥2
2 > r (δ);

iii. If Iδ (ϕ, ψ) = 0 and (ϕ, ψ) ̸= (0, 0), then ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 ⩾ r (δ);
iv. If Iδ (ϕ, ψ) = 0 and (ϕ, ψ) ̸= (0, 0), then J (ϕ, ψ) > 0 for 0 < δ < p

2 , J (ϕ, ψ) = 0 for δ = p
2

and J (ϕ, ψ) < 0 for δ > p
2 .

Proof of Lemma 3.5. By an argument analogous to that used for the proof of Lemma 3.2, we can
see that

Iδ (ϕ, ψ) ⩾

[
δ − C2Sp

p

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

) p−2
2

] (
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
, ∀ (ϕ, ψ) ∈

[
H2

0 (Ω)
]2

.

Therefore, one can easily deduce that

i. If 0 < ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 < r (δ), then Iδ (ϕ, ψ) > 0;
ii. If Iδ (ϕ, ψ) < 0, then ∥∆ϕ∥2

2 + ∥∆ψ∥2
2 > r (δ);

iii. If Iδ (ϕ, ψ) = 0 and (ϕ, ψ) ̸= (0, 0), then ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 ⩾ r (δ).
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Furthermore, the representation

J (ϕ, ψ) =
p − 2δ

2p

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
+

Iδ (ϕ, ψ)

p
, ∀ (ϕ, ψ) ∈

[
H2

0 (Ω)
]2

, δ ∈ (0, ∞) , (33)

allows us to deduce that if Iδ (ϕ, ψ) = 0 and (ϕ, ψ) ̸= (0, 0), then J (ϕ, ψ) > 0 for 0 < δ < p
2 ,

J (ϕ, ψ) = 0 for δ = p
2 and J (ϕ, ψ) < 0 for δ > p

2 . Lemma 3.5 is proved.

Now, we define the depth of a family of potential wells, for δ ∈
(
0, p

2

)
,

d (δ) := inf
(ϕ,ψ)∈Nδ

J (ϕ, ψ) , (34)

where
Nδ :=

{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: Iδ (ϕ, ψ) = 0
}
\ {(0, 0)} . (35)

Then, the expression of d (δ) can be given as follows.

Lemma 3.6. With d (δ) defined by (34), the following properties hold:

i. d (δ) ⩾ a (δ) r (δ) for a (δ) := 1
2

(
1 − 2δ

p

)
with δ ∈

(
0, p

2

)
. In particular,

d ⩾
p − 2

2p

(
1

pC2Sp
p

) 2
p−2

;

ii. d (δ) = δ
2

p−2 (p−2δ)d
p−2 for δ ∈

(
0, p

2

)
;

iii. lim
δ↓0

d (δ) = 0, lim
δ↑ p

2

d (δ) = 0, and the function δ 7−→ d (δ) is continuous on
(
0, p

2

)
;

iv. The function δ 7−→ d (δ) is strictly increasing on (0, 1], strictly decreasing on
[
1, p

2

)
, and takes

the maximum d = d (1) at δ = 1.

Proof of Lemma 3.6. For any (ϕ, ψ) ∈ Nδ, applying Lemma 3.5, we have ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 ⩾ r (δ).
Thus, by recalling the definitions of J (ϕ, ψ) and Iδ (ϕ, ψ), we deduce that

J (ϕ, ψ) =
p − 2δ

2p

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
+

Iδ (ϕ, ψ)

p
= a (δ)

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
⩾ a (δ) r (δ) ,

which implies d (δ) ⩾ a (δ) r (δ) for δ ∈
(
0, p

2

)
.

Next, let (ϕ, ψ) ∈ N such that J (ϕ, ψ) = d. For δ > 0, we define λ = λ (δ) by

Iδ (λϕ, λψ) = 0 ⇐⇒ δλ2
(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
+ pλp

∫
Ω

F (ϕ (x) , ψ (x))dx = 0.

Thus, for each δ > 0, there exists a unique constant

λ (δ) =

 δ
(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
p
∫

Ω F (ϕ (x) , ψ (x))dx


1

p−2

= δ
1

p−2 ,

such that Iδ (λϕ, λψ) = 0. Hence, according to the definition of d (δ), we have

d (δ) ⩽ J (λ (δ) ϕ, λ (δ)ψ) =
δ

2
p−2

2

(
1 − 2δ

p

)(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
=

δ
2

p−2 (p − 2δ) d
p − 2

.
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On the other hand, let δ ∈
(
0, p

2

)
and (ϕ, ψ) ∈ Nδ such that J (ϕ, ψ) = d (δ). By utilizing Lemma

3.1, with λ∗ = δ
− 1

p−2 , we have I (λ∗ϕ, λ∗ψ) = 0. By recalling definition of d, we have

d ⩽ J (λ∗ϕ, λ∗ψ) = δ
− 2

p−2
p − 2

2p

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
= δ

− 2
p−2

p − 2
2p

2p
p − 2δ

d (δ) =
δ
− 2

p−2 (p − 2)
p − 2δ

d (δ) .

This fact implies

d (δ) ⩾
δ

2
p−2 (p − 2δ) d

p − 2
.

Therefore, d (δ) = δ
2

p−2 (p−2δ)d
p−2 , and hence, we immediately obtain the results of the thirst and

fourth statements. This completes the proof of Lemma 3.6.

Remark 3.7. In fact, the existence of an element (ϕ, ψ) ∈ Nδ such that J (ϕ, ψ) = d (δ) is not
trivial. However, by an argument analogous to that used for the proof of Lemma 3.3, we can
easily obtain this result. The proof is left to the reader.

Lemma 3.8. Let δ ∈
(
0, p

2

)
and J (ϕ, ψ) ⩽ d (δ), the following properties hold:

i. If Iδ (ϕ, ψ) > 0, then 0 < ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 < d(δ)
a(δ) ;

ii. If ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 > d(δ)
a(δ) , then Iδ (ϕ, ψ) < 0;

iii. If Iδ (ϕ, ψ) = 0, then ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 ⩽
d(δ)
a(δ) .

Proof of Lemma 3.8. By recalling (33), we have

d (δ) ⩾ J (ϕ, ψ) = a (δ)
(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
+

Iδ (ϕ, ψ)

p
, ∀ (ϕ, ψ) ∈

[
H2

0 (Ω)
]2

.

This fact implies

i. If Iδ (ϕ, ψ) > 0, then 0 < ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 < d(δ)
a(δ) ;

ii. If ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 > d(δ)
a(δ) , then Iδ (ϕ, ψ) < 0;

iii. If Iδ (ϕ, ψ) = 0, then ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 ⩽
d(δ)
a(δ) .

Lemma 3.8 is proved.

Remark 3.9. Lemmata 3.5 and 3.8 permit us to partition the space
[
H2

0 (Ω)
]2 into two parts

Iδ (ϕ, ψ) > 0 and Iδ (ϕ, ψ) < 0 by surface Nδ. The inside part of Nδ is Iδ (ϕ, ψ) > 0 and the
outside part of Nδ is Iδ (ϕ, ψ) < 0. A sphere ∥∆ϕ∥2

2 + ∥∆ψ∥2
2 = r (δ) lies inside of Iδ (ϕ, ψ) > 0

and sphere ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 = d(δ)
a(δ) lies inside of Iδ (ϕ, ψ) < 0.

For the time being, we are in a position to introduce the single potential well W and a family
of potential wells Wδ with its outsider U and Uδ, respectively. For δ ∈

(
0, p

2

)
, define

W :=
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: J (ϕ, ψ) < d, I (ϕ, ψ) > 0
}
∪ {(0, 0)} ,

Wδ :=
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: J (ϕ, ψ) < d (δ) , Iδ (ϕ, ψ) > 0
}
∪ {(0, 0)} ,

W δ :=
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: J (ϕ, ψ) ⩽ d (δ) , Iδ (ϕ, ψ) ⩾ 0
}

,

U :=
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: J (ϕ, ψ) < d, I (ϕ, ψ) < 0
}

,

Uδ :=
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2

: J (ϕ, ψ) < d (δ) , Iδ (ϕ, ψ) < 0
}

.
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Lemma 3.10. Let δ ∈
(
0, p

2

)
. Then, we have the following conclusions

B
(

0,
√

min {r (δ) , 2d (δ)}
)
⊂ Wδ ⊂ B

(
0,

√
d (δ)
a (δ)

)
, Uδ ⊂

[
H2

0 (Ω)
]2 \ B

[
0,
√

r (δ)
]

,

where B (a, r0) and B [a, r0] are open and close ball centered at a and with radius r defined by B (0, r0) :={
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2 : ∥∆ϕ∥2

2 + ∥∆ψ∥2
2 < r2

0

}
and B [0, r0] :=

{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2 : ∥∆ϕ∥2

2 + ∥∆ψ∥2
2 ⩽ r2

0

}
,

respectively.

Proof of Lemma 3.10. First, if ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 < r (δ), then we have (ϕ, ψ) = (0, 0) or Iδ (ϕ, ψ) >

0. On the other hand, since J (ϕ, ψ) ⩽ 1
2

(
∥∆ϕ∥2

2 + ∥∆ψ∥2
2

)
and ∥∆ϕ∥2

2 + ∥∆ψ∥2
2 < 2d (δ), we

also obtain J (ϕ, ψ) < d (δ). Hence, we have

B
(

0,
√

min {r (δ) , 2d (δ)}
)
⊂ Wδ.

Next, let (ϕ, ψ) ∈ Wδ. This fact implies Iδ (ϕ, ψ) > 0 or (ϕ, ψ) = (0, 0). Hence, one can
verify from Lemma 3.8 that 0 < ∥∆ϕ∥2

2 + ∥∆ψ∥2
2 < r (δ) or (ϕ, ψ) = (0, 0). That means

Wδ ⊂ B
(

0,
√

d(δ)
a(δ)

)
. Finally, if (ϕ, ψ) ∈ Uδ, then Iδ (ϕ, ψ) < 0. Hence, it follows from Lemma 3.5

that ∥∆ϕ∥2
2 + ∥∆ψ∥2

2 > r (δ). Therefore, Uδ ⊂
[
H2

0 (Ω)
]2 \ B

[
0,
√

r (δ)
]
. Lemma 3.11 is proved

completely.

From the definition of Wδ, Uδ and Lemma 3.6, we can obtain the following result.

Lemma 3.11. The following properties hold:

i. If 0 < δ′ < δ′′ ⩽ 1 then Wδ′ ⊂ Wδ′′ ;
ii. If 1 ⩽ δ′′ < δ′ < p

2 then Uδ′ ⊂ Uδ′′ .

Lemma 3.12. Let 0 < J (ϕ, ψ) < d for some (ϕ, ψ) ∈
[
H2

0 (Ω)
]2, δ1 < δ2 are the two roots of equation

J (ϕ, ψ) = d (δ). Then the sign of Iδ (ϕ, ψ) are unchangeable for δ1 < δ < δ2.

Proof of Lemma 3.12. If 0 < J (ϕ, ψ), then (ϕ, ψ) ̸= (0, 0). Furthermore, if sign of Iδ (ϕ, ψ) are
changed for δ1 < δ < δ2, then there exists a δ ∈ (δ1, δ2) such that Iδ (ϕ, ψ) = 0. Thus by the
definition of d (δ) we have J (ϕ, ψ) ⩾ d

(
δ
)

which contradicts

d (δ1) = d (δ2) = J (ϕ, ψ) ⩾ d
(
δ
)

.

Lemma 3.12 is proved.

3.2 Invariant sets and vacuum isolating of solutions

In this section, we discuss the invariance of some sets under the flow of (1)-(4) and vacuum
isolating behavior of solutions for Problem (1)-(4). We begin by introducing the following
important lemma.

Lemma 3.13. The Lyapunov function

[0, T∞) ∋ t 7−→ E (t) =
1
2

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
+ J (u (t) , v (t)) , (36)

is a decreasing function along the trajectories. In particular, we have the following estimate

E′ (t) = −
∥∥u′ (t)

∥∥q1
q1
−
∥∥v′ (t)

∥∥q2
q2

, ∀t ∈ [0, T∞) . (37)
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Proof of Theorem 3.13. The energy identity (37) can be obtained by testing (1) with ut, testing (2)
with vt, and adding these two equations. we obtain (37). Lemma 3.13 is proved.

Next, by using the potential wells above, we can obtain the following invariance for some
sets under the flow of (1)-(4) and vacuum isolating behavior for the solutions of Problem (1)-(4).

Theorem 3.14. Suppose that 0 < e < d and δ1 < δ2 be the two roots of equation d (δ) = e. Then:

i. All solutions of Problem (1)-(4) with E (0) = e belong to Wδ for all δ ∈ (δ1, δ2), provided
I (u0, v0) > 0 or u0 = v0 = 0;
ii. All solutions of Problem (1)-(4) with E (0) = e belong to Uδ for all δ ∈ (δ1, δ2), provided
I (u0, v0) < 0.

Proof of Theorem 3.14. Let (u, v) be any solution of Problem (1)-(4) with E (0) = e and I (u0, v0) >
0 or u0 = v0 = 0. If u0 = v0 = 0 then (u0, v0) ∈ Wδ for all δ ∈ (δ1, δ2). If I (u0, v0) > 0, then
from the definition of d (δ) and

1
2

(
∥u1∥2

2 + ∥v1∥2
2

)
+ J (u0, v0) = E (0) = d (δ1) = d (δ2) < d (δ) , ∀δ ∈ (δ1, δ2) , (38)

it may be concluded that J (u0, v0) < d (δ) for all δ ∈ (δ1, δ2). We will verify that Iδ (u0, v0) > 0,
for all δ ∈ (δ1, δ2). Indeed, assume that there exists δ ∈ (δ1, δ2) such that Iδ (u0, v0) = 0.
Thus, by definition of d (δ), we obtain J (u0, v0) ⩾ d

(
δ
)
> d (δ1) = d (δ2), contrary to (38).

Therefore, we have (u0, v0) ∈ Wδ for all δ ∈ (δ1, δ2). Next we prove that (u (t) , v (t)) ∈ Wδ for
all δ ∈ (δ1, δ2) and for all t ∈ [0, T∞). If it is false, then it must have a t0 ∈ (0, T∞) such that
(u (t0) , v (t0)) ∈ ∂Wδ for some δ ∈ (δ1, δ2), i.e. Iδ (u (t0) , v (t0)) = 0, (u (t0) , v (t0)) ̸= (0, 0) or
J (u (t0) , v (t0)) = d (δ). From Lemma 3.13, we see that J (u (t0) , v (t0)) = d (δ) is impossible.
On the other hand, if Iδ (u (t0) , v (t0)) = 0 and (u (t0) , v (t0)) ̸= (0, 0) then by the definition of
d (δ) we have J (u (t0) , v (t0)) ⩾ d (δ) which contradicts with

d (δ) ⩽ J (u (t0) , v (t0)) ⩽ E (t0) ⩽ E (0) < d (δ) .

Next, we assume that (u, v) be any solution of Problem (1)-(4) with E (0) = e and I (u0, v0) < 0.
First by (38), in the same manner above, we can obtain Iδ (u0, v0) < 0 and J (u0, v0) < d (δ)
for all δ ∈ (δ1, δ2) i.e. (u0, v0) ∈ Uδ for all δ ∈ (δ1, δ2). Next, we prove that (u (t) , v (t)) ∈ Uδ

for all δ ∈ (δ1, δ2) and for all t ∈ [0, T∞). If it is false, let t0 ∈ (0, T∞) be the first time such
that (u (t) , v (t)) ∈ Uδ for all t ∈ [0, t0) and (u (t0) , v (t0)) ∈ ∂Uδ i.e. Iδ (u (t0) , v (t0)) = 0 or
J (u (t0) , v (t0)) = d (δ) for some δ ∈ (δ1, δ2). One again, we know that J (u (t0) , v (t0)) = d (δ)
is impossible. From (u (t) , v (t)) ∈ Uδ for all t ∈ [0, t0), we obtain Iδ (u (t) , v (t)) < 0 for all
t ∈ (0, t0). This fact implies ∥u (t)∥2

a + ∥v (t)∥2
b > r (δ) for all t ∈ (0, t0). Therefore, we obtain

∥u (t0)∥2
a + ∥v (t0)∥2

b ⩾ r (δ) > 0. Hence, by the definition of d (δ), we get J (u (t0) , v (t0)) ⩾
d (δ) which contradicts with the fact J (u (t0) , v (t0)) < d (δ). Theorem 3.14 is proved.

From Theorem 3.14 and Lemma 3.6, we can obtain the following theorems.

Theorem 3.15. If in Theorem 3.14 the assumption E (0) = e is replaced by 0 < E (0) ⩽ e, then the
conclusion of Theorem 3.14 also holds.

Theorem 3.16. Suppose that 0 < e < d and δ1 < δ2 be the two roots of equation d (δ) = e. Then for
any δ ∈ (δ1, δ2) both sets Wδ and Uδ are invariant. Thus, both sets

Wδ1δ2 =
⋃

δ1<δ<δ2

Wδ, Uδ1δ2 =
⋃

δ1<δ<δ2

Uδ,

are invariant under the flow of Problem (1)-(4), provided 0 < E (0) ⩽ e.
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From the above results, we see that if 0 < E (0) ⩽ e < d, then I (u0, v0) = 0 and (u0, v0) ̸=
(0, 0) is impossible. So the result of Theorem 3.15 shows that for the set of all solutions of
Problem (1)-(4) with 0 < E (0) ⩽ e < d there exists a vacuum region

Ve = Nδ1δ2 =
⋃

δ1<δ<δ2

Nδ =
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2 \ {(0, 0)} : Iδ (ϕ, ψ) = 0, δ ∈ (δ1, δ2)

}
,

such that there is no any solution of Problem (1)-(4) in Ve. And the vacuum region Ve become
bigger and bigger with decreasing of e. As the limit case we obtain

V0 =
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2 \ {(0, 0)} : Iδ (ϕ, ψ) = 0, δ ∈

(
0,

p
2

)}
.

Actually, we have the following theorem.

Theorem 3.17. Suppose that e ∈ (0, d) and δ1, δ2 are two roots of the equation d (δ) = e with
δ1 < 1 < δ2. Then for all weak solutions of problem (1)-(4) with 0 < E (0) ⩽ e < d, there exists a
vacuum region

Ve = Nδ1δ2 =
⋃

δ1<δ<δ2

Nδ =
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2 \ {(0, 0)} : Iδ (ϕ, ψ) = 0, δ ∈ (δ1, δ2)

}
,

such that no solution of Problem (1)-(4) belongs to Ve. The vacuum region Ve becomes bigger and bigger
when e is decreasing. As the limiting case we obtain

V0 =
{
(ϕ, ψ) ∈

[
H2

0 (Ω)
]2 \ {(0, 0)} : Iδ (ϕ, ψ) = 0, δ ∈

(
0,

p
2

)}
.

Proof of Theorem 3.17. Let (u, v) be a solution of Problem (1)-(4) with 0 < E (0) ⩽ e < d. We only
need to prove that if (u (t) , v (t)) ̸= (0, 0), then for all δ ∈ (δ1, δ2) we have Iδ (u (t) , v (t)) ̸= 0
for all t ∈ [0, T∞). Ub fact, we have Iδ (u0, v0) ̸= 0, otherwise, if Iδ (u0, v0) = 0, combine
with (u0, v0) ̸= (0, 0), we deduce that J (u0, v0) ⩾ d (δ) > d (δ1) = e, which is contradic-
tive with J (u0, v0) ⩽ e. On the other hand, suppose that there exists t1 ∈ (0, T∞) such that
(u (t1) , v (t1)) ∈ Ve, which implies that there exists δ0 ∈ (δ1, δ2) such that u (t1) ∈ Nδ0 . It
follows from definition of d (δ) that

E (0) ⩾ E (t1) = J (u (t1) , v (t1)) ⩾ d (δ0) > d (δ1) = E (0) ,

which eventually leads to a contradiction. Theorem 3.17 is proved.

In order to discuss about the invariant of the solutions with nonnegative initial energy, we
introduce the following results.

Theorem 3.18. All nontrivial solutions of Problem (1)-(4) with E (0) = 0 belong to

[
H2

0 (Ω)
]2 \ B

(
0,
√

r
( p

2

))
.

Proof of Theorem 3.18. Let (u, v) be any nontrivial solution of Problem (1)-(4) with E (0) = 0.
From the Lemma 3.13, we deduce that

0 = E (0) ⩾ E (t) =
1
2

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
+ J (u (t) , v (t)) , ∀t ∈ [0, ∞) ,
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we get J (u (t) , v (t)) < 0 for all t ∈ [0, T∞). This fact gives us

1
2

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
<
∫

Ω
F (u (x, t) , v (x, t))dx

⩽ C2Sp
p

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

) p
2
, ∀t ∈ [0, T∞) .

The previous inequality shows that ∥∆u (t)∥2
2 + ∥∆v (t)∥2

2 >

(
1

2C2Sp
p

) 2
p−2

= r
( p

2

)
for all t ∈

[0, T∞). Theorem 3.18 is proved completely.

Theorem 3.19. All solutions of Problem (1)-(4) with E (0) < 0 belong to[
H2

0 (Ω)
]2 \ B (0, ϱ2) ,

where ϱ2 > 0 be unique solution of the equation z2

2 − C2Sp
∗zp = E (0).

Furthermore, we have

(u (t) , v (t)) ∈ Uδ, ∀δ ∈
(

0,
p
2

)
, t ∈ [0, T∞) .

Proof of Theorem 3.19. First, we observe that

0 > E (0) ⩾ E (t) ⩾ J (u (t) , v (t)) =
1
2

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
−
∫

Ω
F (u (x, t) , v (x, t))dx

⩾
1
2

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
− C2Sp

p

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

) p
2

= H
(√

∥∆u (t)∥2
2 + ∥∆v (t)∥2

2

)
, (39)

where H (z) = z2

2 − C2Sp
pzp for z ∈ (0, ∞). We notice that if E (0) < 0 then there exists unique

ϱ2 >
√

r
( p

2

)
such that H (ϱ2) = E (0) < 0. Therefore, from (39), we obtain ∥∆u (t)∥2

2 + ∥∆v (t)∥2
2 ⩾

ϱ2
2 for all t ∈ [0, T∞). Theorem 3.19 is proved.

Remark 3.20. If E (0) < 0 and ϱ2 > 0 be unique solution of the equation z2

2 − C2Sp
pzp = E (0),

then we have

C2Sp
pϱ

p
2 =

ϱ2
2

2
− E (0) ⩾

√
−2E (0)ϱ2.

This fact implies

ϱ2 ⩾

(
−2E (0)

C2
2S2p

p

) 1
2(p−1)

.

So we have lim
E(0)→−∞

ϱ2 = ∞.

Theorem 3.21. Assume that E (0) < d and I (u0, v0) < 0, then for all t ∈ [0, T∞), we have
(u (t) , v (t)) ∈ V and

∥∆u (t)∥2
2 + ∥∆v (t)∥2

2 >
2pd

p − 2
, ∀t ∈ [0, ∞) .

Proof of Theorem 3.21. With same spirit of Theorem 3.14, we obtain (u (t) , v (t)) ∈ V for all
t ∈ [0, T∞). Furthermore, by recalling the definition of depth of potential well, we have

d ⩽ sup
λ∈(0,∞)

J (λu (t) , λv (t)) = J (λ∗u (t) , λ∗v (t)) <
(p − 2)

2p

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
.

This completes the proof of Theorem 3.21.
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4 Subcritical case initial energy

This section is devoted to the subcritical case initial energy E (0) < d. By the combination of
modified potential well method with standard continue principle, concavity method and some
differential inequalities, we establish some results related to long time behavior of the solutions
for Problem (1)-(4).

4.1 Global existence and asymptotic behavior

Theorem 4.1. Assume that 0 < E (0) < d and I (u0, v0) > 0 or (u0, v0) = (0, 0) then the solution of
Problem (1)-(4) exists globally on [0, ∞). Moreover, the solution of Problem (1)-(4) satisfies

∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2 + ∥∆u (t)∥2

2 + ∥∆v (t)∥2
2 ⩽

2pE (0)
p − 2δ1

, ∀t ∈ [0, ∞) , (40)

where δ1 be smallest positive solution of equation d (δ) = E (0).

Proof of Theorem 4.1. In order to prove the existence of global weak solution, it suffices to
show that ∥u′ (t)∥2

2 + ∥v′ (t)∥2
2 + ∥∆u (t)∥2

2 + ∥∆v (t)∥2
2 is bounded uniformly with respect to

time variable. Under the hypotheses in Theorem 4.1, accordingly to Theorem 3.14, we have
(u (t) , v (t)) ∈ Wδ for all t ∈ [0, T∞) and δ ∈ (δ1, δ2) where δ1 < δ2 be the two roots of equation
d (δ) = E (0). Then we have Iδ (u (t) , v (t)) ⩾ 0 for all t ∈ [0, T∞) and δ ∈ (δ1, δ2). By letting
δ ↘ δ1, we obtain Iδ1 (u (t) , v (t)) ⩾ 0 for all t ∈ [0, T∞). So the following estimate holds on

1
2

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
+

1
2

(
1 − 2δ1

p

)(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
⩽ E (t) ⩽ E (0) < d. (41)

Hence, from δ1 < 1 and (41), we can easily obtain

∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2 + ∥∆u (t)∥2

2 + ∥∆v (t)∥2
2 ⩽

2pE (0)
p − 2δ1

, ∀t ∈ [0, ∞) , (42)

which eventually implies that T∞ = ∞. This completes the proof of Theorem 4.1.

Next, we show that the global existence also holds for the case of family potential wells.

Theorem 4.2. Assume that 0 < E (0) < d and Iδ2 (u0, v0) > 0 or (u0, v0) = (0, 0) where δ1 < δ2
are two roots of equation d (δ) = E (0). Then, Problem (1)-(4) admits a unique global solution
(u, v) ∈ C

(
[0, ∞) ;

[
H2

0 (Ω)
]2
)

with (ut, vt) ∈ C
(
[0, ∞) ;

[
L2 (Ω)

]2
)

, (u (t) , v (t)) ∈ Wδ for all
δ1 < δ < δ2, t ∈ [0, ∞).

Proof of Theorem 4.2. From Theorem 4.1 and part 1 of Theorem 3.14, in order to prove Theorem
4.2, it is sufficient to show that I (u0, v0) > 0 from Iδ2 (u0, v0) > 0. Indeed, if it is false, then there
exists δ ∈ [1, δ2) such that Iδ (u0, v0) = 0. Combining the fact that (u0, v0) ̸= (0, 0) because of
Iδ2 (u0, v0) > 0, we get

J (u0, v0) ⩾ d
(
δ
)

. (43)

Furthermore, from definition of the functional E, definition of the functional J, and part 4 of
Lemma 3.2, we have

1
2

(
∥u1∥2

2 + ∥v1∥2
2

)
+ J (u0, v0) = E (0) = d (δ2) < d

(
δ
)

.

It is a contradiction to (43). Thus, Theorem 4.2 is proved.
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Instead of considering the global existence result that depends on I (u0, v0) > 0, we study
the global existence of Problem (1)-(4) with initial data (u0, v0) relying on the ∥∆·∥2

2 + ∥∆·∥2
2

norm.

Theorem 4.3. Assume that 0 < E (0) < d and ∥∆u0∥2
2 + ∥∆v0∥2

2 < r (δ2), where δ1 < δ2 are
two roots of equation d (δ) = E (0). Then, Problem (1)-(4) admits a unique global solution (u, v) ∈
C
(
[0, ∞) ;

[
H2

0 (Ω)
]2
)

with (ut, vt) ∈ C
(
[0, ∞) ;

[
L2 (Ω)

]2
)

satisfying

∥∆u (t)∥2
2 + ∥∆v (t)∥2

2 ⩽
E (0)
a (δ1)

,
∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 ⩽ 2E (0) , ∀t ∈ [0, ∞) . (44)

Proof of Theorem 4.3. From ∥∆u0∥2
2 + ∥∆v0∥2

2 < r (δ2), we have 0 < ∥∆u0∥2
2 + ∥∆v0∥2

2 < r (δ2) or
(u0, v0) = (0, 0). If 0 < ∥∆u0∥2

2 + ∥∆v0∥2
2 < r (δ2), by applying Lemma 3.5 we get Iδ2 (u0, v0) >

0. Hence, accordingly to Theorem 4.2, the Problem (1)-(4) has a global solution (u, v) ∈
C ([0, ∞) ; V × V) and (ut, vt) ∈ C1 ([0, ∞) ; L2 × L2) and (u (t) , v (t)) ∈ Wδ for δ1 < δ < δ2, t ∈
[0, ∞). Finally, (44) follows from letting δ ↘ δ1 in

1
2

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
+

1
2

(
1 − 2δ

p

)(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
⩽ E (t) ⩽ E (0) , ∀t ∈ [0, ∞) .

This completes the proof of Theorem 4.3.

Theorem 4.4. Under the same assumptions of Theorem 4.1, we have

ut ∈ L∞ (0, ∞; L2 (Ω)
)
∩ Lq1 (0, ∞; Lq1 (Ω)) , vt ∈ L∞ (0, ∞; L2 (Ω)

)
∩ Lq2 (0, ∞; Lq2 (Ω)) .

Proof of Theorem 4.4. Thanks to Theorem 40 and Lemma 3.13, we have

1
2

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
+
∫ t

0

∥∥u′ (s)
∥∥q1

q1
ds +

∫ t

0

∥∥v′ (s)
∥∥q2

q2
⩽ E (0) , ∀t ∈ [0, ∞) .

Letting t → ∞, we obtain our conclusion. Theorem 4.4 is proved.

Next, we give one useful lemma to estimate the behavior of weak solution. For the proof,
we refer the reader to [14].

Lemma 4.5 (The Nakao inequality). Let φ : [0, ∞) −→ [0, ∞) be a bounded function for which there
exist constant γ ⩾ 0 such that

sup
t⩽s⩽t+1

φ1+γ (s) ≲ φ (t)− φ (t + 1) , ∀t ∈ [0, ∞) .

Then

i. If γ = 0, then there exist positive constant θ > 0 such that φ (t) ≲ exp (−θt) for all t ∈ [0, ∞).
ii. If γ > 0, then φ (t) ≲ (1 + t)−

1
γ for all t ∈ [0, ∞).

The following theorem shows the asymptotic behavior of the global solutions of the Problem
(1)-(4).

Theorem 4.6. Assume that E (0) < d and further (u0, v0) ∈ W . Thus, we have the following decay
estimates:

i. If q1 = q2 = 2, then there exists γ > 0 such that∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2 + ∥∆u (t)∥2

2 + ∥∆v (t)∥2
2 ≲ E (t) ≲ exp (−γt) , ∀t ∈ [0, ∞) .
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ii. If q = max {q1, q2} ∈ (2, 2∗∗), then∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2 + ∥∆u (t)∥2

2 + ∥∆v (t)∥2
2 ≲ E (t) ≲ (1 + t)−

2
q−2 , ∀t ∈ [0, ∞) .

Proof of Theorem 4.6. By integrating (38) over [t, t + 1], we have

E (t)− E (t + 1) =
∫ t+1

t

∥∥u′ (s)
∥∥q1

q1
ds +

∫ t+1

t

∥∥v′ (s)
∥∥q2

q2
ds =: D (t) , ∀t ∈ [0, ∞) . (45)

Thus, by using mean value theorem, there exist t1 ∈
[
t, t + 1

4

]
and t2 ∈

[
t + 3

4 , t + 1
]

such that∥∥u′ (ti)
∥∥q1

q1
≲ D (t) ,

∥∥v′ (ti)
∥∥q2

q2
≲ D (t) , ∀i ∈ {1, 2} . (46)

Multiplying the first equation by u, the second equation by v, and integrating it over Ω× (t1, t2),
we obtain∫ t2

t1

I (u (s) , v (s))ds =
∫ t2

t1

∥∥u′ (s)
∥∥2

2 ds +
∫ t2

t1

∥∥v′ (s)
∥∥2

2 ds

+
〈
u′ (t1) , u (t1)

〉
−
〈
u′ (t2) , u (t2)

〉
+
〈
v′ (t1) , v (t1)

〉
−
〈
v′ (t2) , v (t2)

〉
−
∫ t2

t1

〈∣∣u′ (s)
∣∣q1−2u′ (s) , u (s)

〉
ds −

∫ t2

t1

〈∣∣v′ (s)∣∣q2−2v′ (s) , v (s)
〉

ds.

(47)

We estimate the terms on both side of (47) as follows.
Estimate I1 =

∫ t2
t1
∥u′ (s)∥2

2 ds +
∫ t2

t1
∥v′ (s)∥2

2 ds
By making use Hölder inequality, we deduce that

∫ t2

t1

∥∥u′ (s)
∥∥2

2 ds ≲
(∫ t2

t1

∥∥u′ (s)
∥∥q1

q1
ds
) 2

q1
≲ D

2
q1 (t) ,

and ∫ t2

t1

∥∥v′ (s)
∥∥2

2 ds ≲
(∫ t2

t1

∥∥v′ (s)
∥∥q2

q2
ds
) 2

q2
≲ D

2
q2 (t) .

Therefore, we have

I1 =
∫ t2

t1

∥∥u′ (s)
∥∥2

2 ds +
∫ t2

t1

∥∥v′ (s)
∥∥2

2 ds ≲ D
2

q1 (t) + D
2

q2 (t) . (48)

Estimate I2 = ⟨u′ (t1) , u (t1)⟩ − ⟨u′ (t2) , u (t2)⟩+ ⟨v′ (t1) , v (t1)⟩ − ⟨v′ (t2) , v (t2)⟩
By applying Cauchy–Schwarz inequality, for any ϵ > 0, we have∣∣〈u′ (ti) , u (ti)

〉∣∣ ⩽ ∥∥u′ (ti)
∥∥

2∥u (ti)∥2 ≲
∥∥u′ (ti)

∥∥
q1
∥u (ti)∥a ≲ D

1
q1 (t) E

1
2 (t) ≲ ϵE (t)+C (ϵ) D

2
q1 (t) ,

and ∣∣〈v′ (ti) , v (ti)
〉∣∣ ≲ ϵE (t) + C (ϵ) D

2
q2 (t) ,

for all i ∈ {1, 2}. Therefore, we get

I2 ≲ ϵE (t) + C (ϵ) D
2

q1 (t) + C (ϵ) D
2

q2 (t) . (49)

Estimate I3 = −
∫ t2

t1

〈
|u′ (s)|q1−2u′ (s) , u (s)

〉
ds −

∫ t2
t1

〈
|v′ (s)|q2−2v′ (s) , v (s)

〉
ds
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By using Hölder’s inequality and Young’s inequality, we have

∫ t2

t1

〈∣∣u′ (s)
∣∣q1−2u′ (s) , u (s)

〉
ds ⩽

∫ t2

t1

∥∥u′ (s)
∥∥q1−1

q1
∥u (s)∥q1

ds

≲ ϵ
∫ t2

t1

∥u (s)∥q1
q1

ds + C (ϵ)
∫ t2

t1

∥∥u′ (s)
∥∥q1

q1
ds

≲ ϵ
∫ t2

t1

E (s)ds + C (ϵ) D (t) ,

and ∫ t2

t1

〈∣∣v′ (s)∣∣q2−2v′ (s) , v (s)
〉

ds ≲ ϵ
∫ t2

t1

E (s)ds + C (ϵ) D (t) .

Therefore, we obtain

I3 ≲ ϵ
∫ t2

t1

E (s)ds + C (ϵ) D (t) . (50)

On the other hand, from Theorem 4.1, we have Iδ1 (u (t) , v (t)) ⩾ 0 for all t ∈ [0, ∞), then
for all t ∈ [0, ∞), we deduce

I (u (t) , v (t)) = (1 − δ1)
(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
+ Iδ1 (u (t) , v (t))

⩾ (1 − δ1)
(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
.

From definition of the functional E, we obtain

E (t) ≲
∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 + I (u (t) , v (t)) , ∀t ∈ [0, ∞) . (51)

From (47)-(51), with ϵ > 0 and small enough, we achieve that

∫ t2

t1

E (s)ds ≲ ϵE (t) + C (ϵ) D (t) + C (ϵ) D
2

q1 (t) + C (ϵ) D
2

q2 (t) , ∀t ∈ [0, ∞) . (52)

By using mean value theorem for integral and Lemma 3.13, we deduce that E (t2) ≲
∫ t2

t1
E (s)ds.

This fact implies

E (t) ≲
∫ t2

t1

E (s)ds + D (t) , ∀t ∈ [0, ∞) . (53)

Combine with (52), (53) leads to

E (t) ≲ D (t) + D
2

q1 (t) + D
2

q2 (t) , ∀t ∈ [0, ∞) . (54)

Let q = max {q1, q2}, from (54), we can obtain

max
t∈[t,t+1]

E
q
2 (t) = E

q
2 (t) ≲ E (t)− E (t + 1) , ∀t ∈ [0, ∞) . (55)

By using Lemma 4.5, we can easily obtain decay estimates as in our theorem. This completes
the proof of Theorem 4.6.
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4.2 Blow-up in finite time

Our main goal here is to show that with some suitable conditions, the weak solution of Problem
(1)-(4) blows up in finite time. We begin by the following lemma.

Lemma 4.7. Let β ∈ [2, p] then

∥u∥β
p ≲ ∥∆u∥2

2 + ∥u∥p
p , ∀u ∈ H2

0 (Ω) .

Theorem 4.8. Assume that E (0) < d, (u0, v0) ∈ U and q = max {q1, q2} < p then the solution of
Problem (1)-(4) blows up in finite time.

Proof of Theorem 4.8. Our strategy can be explained as follows. First, we suppose that the
solution exists for all time domain, and then we reach to a contradiction. For this purpose, we
put H (t) := −E (t), and G (t) := E∗ + H (t) for all t ∈ [0, ∞) where E∗ ∈ (E (0) , d). By direct
calculation and taking (37) into consideration, we obtain

G′ (t) = −E′ (t) =
∥∥u′ (t)

∥∥q1
q1
+
∥∥v′ (t)

∥∥q2
q2
⩾ 0, ∀t ∈ [0, ∞) . (56)

Therefore, G is increasing function and G (t) ⩾ G (0) = E∗ − E (0) > 0 for all t ∈ [0, ∞).
Moreover, in this case, accordingly to Theorem 3.21, the function G satisfies

0 < G (t) = E∗ −
1
2

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
− 1

2

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
+
∫

Ω
F (u (x, t) , v (x, t))dx

⩽ E∗ −
pd

p − 2
+ C2

(
∥u (t)∥p

p + ∥v (t)∥p
p

)
⩽ C2

(
∥u (t)∥p

p + ∥v (t)∥p
p

)
, ∀t ∈ [0, ∞) . (57)

We consider the function M defined by

M (t) := G1−σ (t) + ϵ
(〈

u′ (t) , u (t)
〉
+
〈
v′ (t) , v (t)

〉)
, ∀t ∈ [0, ∞) , (58)

for ϵ > 0 small enough, to be determined later, and

0 < σ < min
{

p − 2
2p

,
p − q1

p (q1 − 1)
,

p − q2

p (q2 − 1)

}
. (59)

Our goal is to show that M satisfies Riccati differential inequality

M′ (t) ≳ Mα (t) , ∀t ∈ [0, ∞) .

for some constants α > 1. This fact, of course, leads to a blow-up in finite time.

First, we note that lim
ϵ1↓ 2

p

(
1
ϵ1
− 1
)
= p−2

2 > (p−2)E∗
2d , thus there exists ϵ1 ∈

(
2
p , 1
)

such that

1
ϵ1
− 1 > (p−2)E∗

2d . Next, we know that lim
ϵ2↓0

(
1
ϵ1
− 1 − ϵ2

ϵ1

)
= 1

ϵ1
− 1 > (p−2)E∗

2d . Therefore, there

exists ϵ2 ∈ (0, 1) such that

1
ϵ1

− 1 − ϵ2

ϵ1
>

(p − 2) E∗
2d

⇐⇒ (1 − ϵ1 − ϵ2)
2d

p − 2
> ϵ1E∗.
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This fact actually implies

(1 − ϵ1 − ϵ2)
∫

Ω
F (u (x, t) , v (x, t))dx >

(1 − ϵ1 − ϵ2)
(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
p

>
(1 − ϵ1 − ϵ2) 2d

p − 2
> ϵ1E∗.

By taking a derivative of (58) and using (1) and (2), we obtain

M′ (t) = (1 − σ) G−σ (t) G′ (t) + ϵ
(∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2

)
+ ϵ

(〈
u′′ (t) , u (t)

〉
+
〈
v′′ (t) , v (t)

〉)
= (1 − σ) G−σ (t) G′ (t) + ϵ

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
− ϵ

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
+ ϵp

∫
Ω

F (u (x, t) , v (x, t))dx − ϵ
〈∣∣u′ (t)

∣∣q1−2u′ (t) , u (t)
〉
− ϵ

〈∣∣v′ (t)∣∣q2−2v′ (t) , v (t)
〉

= (1 − σ) G−σ (t) G′ (t) + ϵ
(∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2

)
− ϵ

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
+ ϵϵ1

[
pG (t) +

p
2

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
+

p
2

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
− pE∗

]
+ ϵϵ2 p

∫
Ω

F (u (x, t) , v (x, t))dx + ϵ (1 − ϵ1 − ϵ2) p
∫

Ω
F (u (x, t) , v (x, t))dx

− ϵ
〈∣∣u′ (t)

∣∣q1−2u′ (t) , u (t)
〉
− ϵ

〈∣∣v′ (t)∣∣q2−2v′ (t) , v (t)
〉

= (1 − σ) G−σ (t) G′ (t) + ϵ
( pϵ1

2
+ 1
) (∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2

)
+ ϵ

( pϵ1

2
− 1
) (

∥∆u (t)∥2
2 + ∥∆v (t)∥2

2

)
+ ϵϵ1 pG (t) + ϵϵ2 p

∫
Ω

F (u (x, t) , v (x, t))dx

− ϵ
〈∣∣u′ (t)

∣∣q1−2u′ (t) , u (t)
〉
− ϵ

〈∣∣v′ (t)∣∣q2−2v′ (t) , v (t)
〉

+ ϵp
[
(1 − ϵ1 − ϵ2)

∫
Ω

F (u (x, t) , v (x, t))dx − ϵ1E∗

]
⩾ (1 − σ) G−σ (t) G′ (t) + ϵ

( pϵ1

2
+ 1
) (∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2

)
(60)

+ ϵ
( pϵ1

2
− 1
) (

∥u (t)∥2
a + ∥v (t)∥2

b

)
+ ϵϵ1 pG (t) + ϵϵ2 p

∫
Ω

F (u (x, t) , v (x, t))dx

− ϵ
〈∣∣u′ (t)

∣∣q1−2u′ (t) , u (t)
〉
− ϵ

〈∣∣v′ (t)∣∣q2−2v′ (t) , v (t)
〉

. (61)

By using Young’s inequality, we have following estimates

〈∣∣u′ (t)
∣∣q1−2u′ (t) , u (t)

〉
⩽

ϵ
q1
3

q1
∥u (t)∥q1

q1
+

ϵ
−q′1
3
q′1

∥∥u′ (t)
∥∥q1

q1
⩽

ϵ
q1
3

q1
∥u (t)∥q1

q1
+

ϵ
−q′1
3
q′1

G′ (t) , (62)

and

〈∣∣v′ (t)∣∣q2−2v′ (t) , v (t)
〉
⩽

ϵ
q2
4

q2
∥v (t)∥q2

q2
+

ϵ
−q′2
4
q′2

∥∥v′ (t)
∥∥q2

q2
⩽

ϵ
q2
4

q2
∥v (t)∥q2

q2
+

ϵ
−q′2
4
q′2

G′ (t) , (63)

for any ϵ3 > 0, ϵ4 > 0, where q′i is the conjugate exponent of qi. Furthermore, from (61)-(63),
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with ϵ
−q′1
3 = K1G−σ (t) , ϵ

−q′2
4 = K2G−σ (t) where K1 > 0, K2 > 0 are specified later, we obtain

M′ (t) ⩾
[

1 − σ − ϵ

(
K1

q′1
+

K2

q′2

)]
G−σ (t) G′ (t) + ϵ

( pϵ1

2
+ 1
) (∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2

)
+ ϵ

( pϵ1

2
− 1
) (

∥∆u (t)∥2
2 + ∥∆v (t)∥2

2

)
+ ϵϵ1 pG (t) + ϵϵ2 p

∫
Ω

F (u (x, t) , v (x, t))dx

− ϵ

q1Kq1−1
1

Gσ(q1−1) (t) ∥u (t)∥q1
q1
− ϵ

q2Kq2−2
2

Gσ(q2−1) (t) ∥v (t)∥q2
q2

. (64)

By using (11) and Theorem 3.21, we have following estimate

∥u (t)∥p
p + ∥v (t)∥p

p ≲ G (t) +
∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 + ∥∆u (t)∥2
2 + ∥∆v (t)∥2

2 , ∀t ∈ [0, ∞) . (65)

Therefore, by making use (57) and (65), we get

Gσ(q1−1) (t) ∥u (t)∥q1
q1
≲
(
∥u (t)∥p

p + ∥v (t)∥p
p

)σ(q1−1)
∥u (t)∥q1

q1

≲ ∥u (t)∥σp(q1−1)+q1
p + ∥v (t)∥σp(q1−1)+q1

p

≲ ∥∆u (t)∥2
2 + ∥∆v (t)∥2

2 + ∥u (t)∥p
p + ∥v (t)∥p

p

≲ G (t) +
∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 + ∥∆u (t)∥2
2 + ∥∆v (t)∥2

2 , (66)

provided by Lemma 4.7 with β = σp (q1 − 1) + q1 < p. With the same spirit, we also obtain

Gσ(q2−1) (t) ∥v (t)∥q2
q2
≲ G (t) +

∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2 + ∥∆u (t)∥2

2 + ∥∆v (t)∥2
2 . (67)

From (64), (66) and (67), there exists a constant C∗ > 0 such that

M′ (t) ⩾
[

1 − σ − ϵ

(
K1

q′1
+

K2

q′2

)]
G−σ (t) G′ (t)

+ ϵ

[
pϵ1

2
+ 1 − C∗

(
1

Kq1−1
1

+
1

Kq2−1
2

)](∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
+ ϵ

[
pϵ1

2
− 1 − C∗

(
1

Kq1−1
1

+
1

Kq2−1
2

)](
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
+ ϵ

[
ϵ1 p − C∗

(
1

Kq1−q
1

+
1

Kq2−2
2

)]
G (t) + pϵϵ1

∫
Ω

F (u (x, t) , v (x, t))dx. (68)

At this point, for large values of K1 and K2 such that

pϵ1

2
− 1 − C∗

(
1

Kq1−1
1

+
1

Kq2−1
2

)
> 0,

we choose ϵ > 0 such that

1 − σ − ϵ

(
K1

q′1
+

K2

q′2

)
> 0, M (0) = G1−σ (0) + ϵ (⟨u0, u1⟩+ ⟨v0, v1⟩) > 0,

then (68) gives us

M′ (t) ≳ G (t) +
∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 + ∥∆u (t)∥2
2 + ∥∆v (t)∥2

2

+
∫

Ω
F (u (x, t) , v (x, t))dx, ∀t ∈ [0, ∞) . (69)
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On the other hand, applying Hölder’s inequality, we obtain

(〈
u′ (t) , u (t)

〉
+
〈
v′ (t) , v (t)

〉) 1
1−σ ≲

∥∥u′ (t)
∥∥ 1

1−σ

2 ∥u (t)∥
1

1−σ

2 +
∥∥v′ (t)

∥∥ 1
1−σ

2 ∥v (t)∥
1

1−σ

2

≲
∥∥u′ (t)

∥∥ 1
1−σ

2 ∥u (t)∥
1

1−σ
p +

∥∥v′ (t)
∥∥ 1

1−σ

2 ∥v (t)∥
1

1−σ
p

≲
∥∥u′ (t)

∥∥2
2 + ∥u (t)∥

2
1−2σ
p +

∥∥v′ (t)
∥∥2

2 + ∥v (t)∥
2

1−2σ
p

≲
∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 + ∥∆u (t)∥2
2 + ∥∆v (t)∥2

2

+ ∥u (t)∥p
p + ∥v (t)∥p

p

≲
∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 + ∥∆u (t)∥2
2 + ∥∆v (t)∥2

2

+
∫

Ω
F (u (x, t) , v (x, t))dx.

Therefore, we have

M
1

1−σ (t) =
[

G1−σ (t) + ϵ
(〈

u′ (t) , u (t)
〉
+
〈
v′ (t) , v (t)

〉)] 1
1−σ

≲ G (t) +
(〈

u′ (t) , u (t)
〉
+
〈
v′ (t) , v (t)

〉) 1
1−σ

≲ G (t) +
∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 + ∥∆u (t)∥2
2 + ∥∆v (t)∥2

2 +
∫

Ω
F (u (x, t) , v (x, t))dx.

(70)

From (69) and (70), we obtain

M′ (t) ≳ M
1

1−σ (t) , ∀t ∈ [0, ∞) .

And this estimate implies that the solution blows up in a finite time. Theorem 4.8 is proved.

Theorem 4.9. Assume that E (0) < d, (u0, v0) ∈ U and q1 = q2 = 2 then the weak solution of
Problem (1)-(4) blows up in finite time. Furthermore, we have the following estimate

T∞ ⩽
2

p − 2

ζ +

√
ζ2 + 2 (d − E (0))

(
∥u0∥2

2 + ∥v0∥2
2

)
(d − E (0))

, (71)

where
ζ :=

2
p − 2

(
∥u0∥2

2 + ∥v0∥2
2

)
− ⟨u0, u1⟩ − ⟨v0, v1⟩ . (72)

Proof of Theorem 4.9. By last statement in Theorem 2.6, it is enough to prove that no global
solution in [0, ∞) can exists. Then, we will assume, by contradiction, that weak solutions exist
in the whole interval [0, ∞). The main tool in proving the blow-up result is the concavity
method where the basis idea of the method is to construct a positive defined functional M of the
solution by the energy inequality and show that M−α is concave function of time variable. For
this purpose, with T0 > 0, β > 0, and τ > 0 specified later, we define the auxiliary functional
M : [0, T0] −→ R by

M (t) = ∥u (t)∥2
2 + ∥v (t)∥2

2 +
∫ t

0
∥u (s)∥2

2 ds +
∫ t

0
∥v (s)∥2

2 ds

+ (T0 − t)
(
∥u0∥2

2 + ∥v0∥2
2

)
+ β(t + τ)2. (73)
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By direct computation, we achieve that

M′ (t) = 2
〈
u′ (t) , u (t)

〉
+ 2

〈
v′ (t) , v (t)

〉
+
(
∥u (t)∥2

2 − ∥u0∥2
2

)
+
(
∥v (t)∥2

2 − ∥v0∥2
2

)
+ 2β (t + τ)

= 2
〈
u′ (t) , u (t)

〉
+ 2

〈
v′ (t) , v (t)

〉
+ 2

∫ t

0

〈
u′ (s) , u (s)

〉
ds

+ 2
∫ t

0

〈
v′ (s) , v (s)

〉
ds + 2β (t + τ) , (74)

and

M′′ (t) = 2
〈
u′′ (t) , u (t)

〉
+ 2

∥∥u′ (t)
∥∥2

2 + 2
〈
v′′ (t) , v (t)

〉
+ 2

∥∥v′ (t)
∥∥2

2

+ 2
〈
u′ (t) , u (t)

〉
+ 2

〈
v′ (t) , v (t)

〉
+ 2β

= 2
∥∥u′ (t)

∥∥2
2 + 2

∥∥v′ (t)
∥∥2

2 − 2
(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
+ 2p

∫
Ω

F (u (x, t) , v (x, t))dx + 2β.

(75)

From (73) and (74), we have M (t) ⩾ βτ2 > 0 for all t ∈ [0, T0], and M′ (0) = 2 ⟨u0, u1⟩ +
2 ⟨v0, v1⟩+ 2βτ > 0 for βτ large enough.

From (74), thanks to Cauchy-Schwartz inequality, we obtain

(M′ (t))2

4

=

[〈
u′ (t) , u (t)

〉
+
〈
v′ (t) , v (t)

〉
+
∫ t

0

〈
u′ (s) , u (s)

〉
ds +

∫ t

0

〈
v′ (s) , v (s)

〉
ds + β (t + τ)

]2

⩽
(
∥u (t)∥2

2 + ∥v (t)∥2
2 +

∫ t

0
∥u (s)∥2

2 ds +
∫ t

0
∥v (s)∥2

2 ds + β(t + τ)2
)

×
(∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 +
∫ t

0

∥∥u′ (s)
∥∥2

2 ds +
∫ t

0

∥∥v′ (s)
∥∥2

2 ds + β

)
⩽
(∥∥u′ (t)

∥∥2
2 +

∥∥v′ (t)
∥∥2

2 +
∫ t

0

∥∥u′ (s)
∥∥2

2 ds +
∫ t

0

∥∥v′ (s)
∥∥2

2 ds + β

)
M (t) . (76)

From (73)-(76), we obtain

M′′ (t) M (t)− (p + 2) (M′ (t))2

4
⩾ M (t) D (t) , ∀t ∈ [0, T0] , (77)

where

D (t) = − 2p
[

1
2

(∥∥u′ (t)
∥∥2

2 +
∥∥v′ (t)

∥∥2
2

)
−
∫

Ω
F (u (x, t) , v (x, t))dx

]
− 2

(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
− (p + 2)

(∫ t

0

∥∥u′ (s)
∥∥2

2 ds +
∫ t

0

∥∥v′ (s)
∥∥2

2 ds
)
− pβ. (78)
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From definition of the functional E and Theorem 3.21, we achieve that

D (t) = − 2p
[

E (0)−
∫ t

0

∥∥u′ (s)
∥∥2

2 ds −
∫ t

0

∥∥v′ (s)
∥∥2

2 ds − 1
2

(
∥u (t)∥2

a + ∥v (t)∥2
b

)]
− 2

(
∥u (t)∥2

a + ∥v (t)∥2
b

)
− (p + 2)

(∫ t

0

∥∥u′ (s)
∥∥2

2 ds +
∫ t

0

∥∥v′ (s)
∥∥2

2 ds
)
− pβ

= (p − 2)
(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
− 2pE (0)− pβ

+ (p − 2)
(∫ t

0

∥∥u′ (s)
∥∥2

2 ds +
∫ t

0

∥∥v′ (s)
∥∥2

2 ds
)

> 2p [d − E (0)]− pβ. (79)

Choose β ∈ (0, 2 (d − E (0))]. From (77)-(79), we obtain

M (t) ⩾ M (0)
[

1 − (p − 2)
4

M′ (0) t
M (0)

]− 4
p−2

, ∀t ∈ [0, T0] . (80)

Choose τ ∈ (τ∗, ∞) where

τ∗ =

0 if ζ =
2

p − 2

(
∥u0∥2

2 + ∥v0∥2
2

)
− ⟨u0, u1⟩ − ⟨v0, v1⟩ ⩽ 0,

ζ

β
if ζ > 0,

(81)

and T0 ∈
[

2
p−2

βτ2+∥u0∥2
2+∥v0∥2

2
βτ−ζ , ∞

)
, we get

T∗ =
4M (0)

(p − 2) M′ (0)
=

2
[
∥u0∥2

2 + ∥v0∥2
2 + T0

(
∥u0∥2

2 + ∥v0∥2
2

)
+ βτ2

]
(p − 2) (βτ + ⟨u0, u1⟩+ ⟨v0, v1⟩)

⩽ T0.

From (80), we get lim
t↗T∗

M (t) = ∞. This is a contradiction with the fact that the solution is global

and it shows that the solution blows up at finite time.
To derive the upper bound for T∞, we know that

T∞ ⩽
2

p − 2
βτ2 + ∥u0∥2

2 + ∥v0∥2
2

βτ − ζ
=

2
p − 2

f (β, τ) , ∀ (β, τ) ∈ (0, 2 (d − E (0))]× (τ∗, ∞) .

We have

fτ (β, τ) =
β
(

βτ2 − 2ζτ − ∥u0∥2
2 − ∥v0∥2

2

)
(βτ − ζ)2 = 0 ⇐⇒ τ =

ζ ±
√

ζ2 + β
(
∥u0∥2

2 + ∥v0∥2
2

)
β

.

Therefore

f (β, τ) ⩾ f

β,
ζ +

√
ζ2 + β

(
∥u0∥2

2 + ∥v0∥2
2

)
β

 = 2
ζ +

√
ζ2 + β

(
∥u0∥2

2 + ∥v0∥2
2

)
β

= h (β) ,

for all (β, τ) ∈ (0, 2 (d − E (0))]× (τ∗, ∞). Moreover, we also have

h′ (β) = −

(
ζ +

√
ζ2 + β

(
∥u0∥2

2 + ∥v0∥2
2

))
β2

√
ζ2 + β

(
∥u0∥2

2 + ∥v0∥2
2

) ⩽ 0, ∀β ∈ (0, 2 (d − E (0))] ,
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Therefore, we achieve

T∞ ⩽
2

p − 2

ζ +

√
ζ2 + 2 (d − E (0))

(
∥u0∥2

2 + ∥v0∥2
2

)
(d − E (0))

.

Theorem 4.9 is proved.

5 Critical case initial energy

In this section, we shall extend all the results obtained for E (0) < d to E (0) = d. Although
their results are similar, the proofs need necessary modification. Based on this, we do not give
the complete proofs, but just prove these results by modifying the corresponding proofs in the
case of E (0) < d.

First, we can easily to obtain the following lemma.

Lemma 5.1. Assume that (u, v) is a solution to Problem (1)-(4). These three statements are logically
equivalent

i. (u (t) , v (t)) = (u0, v0) for all t ∈ [0, ∞);
ii. (u1, v1) = (0, 0) and (u0, v0) ∈ S , where S is the set of all stationary solutions of Problem
(4)-(4);

iii.
∫ t

0 ∥u′ (s)∥q1
q1

ds =
∫ t

0 ∥v′ (s)∥q2
q2

ds = 0 for all t ∈ (0, ∞).

Lemma 5.2. Assume that E (0) = d. Then I (u0, v0) = 0 and u1 = v1 = 0 if and only if
(u (t) , v (t)) = (u0, v0) for all t ∈ (0, ∞).

Proof of Lemma 5.2. It is clear that if (u (t) , v (t)) = (u0, v0) for all t ∈ (0, ∞), then (u1, v1) =
(0, 0) and (u0, v0) ∈ S . Furthermore, we know that if (u0, v0) ∈ S then I (u0, v0) = 0. So next,
we assume that I (u0, v0) = 0 and u1 = v1 = 0 and prove that (u (t) , v (t)) = (u0, v0) for all
t ∈ (0, ∞). From the equality d = E (0) = J (u0, v0), we get (u0, v0) ∈ Sd and this fact implies
(u (t) , v (t)) = (u0, v0) for all t ∈ (0, ∞). Lemma 5.2 is proved.

Theorem 5.3. Assume that E (0) = d. If (u0, v0) ∈ W then the weak solution of Problem (1)-(4) is
global and limit of total energy of Problem (1)-(4) is zero at infinity.

Proof of Theorem 5.3. First, we prove that there exists t∗ ∈ (0, T∞) such that

∫ t∗

0

∥∥u′ (s)
∥∥q1

q1
ds +

∫ t∗

0

∥∥v′ (s)
∥∥q2

q2
ds > 0.

Suppose
∫ t

0 ∥u′ (s)∥q1
q1

ds +
∫ t

0 ∥v′ (s)∥q2
q2

ds = 0 for all t ∈ (0, T∞). By Lemmas 5.1 and 5.2, we
have I (u0, v0) = 0 and u1 = v1 = 0. From (u0, v0) ∈ W , we obtain u0 = v0 = 0. Therefore,
d = E (0) = 0 which contradicts with d > 0. This fact implies there exists t∗ ∈ (0, T∞) such that
E (t∗) < d and (u (t∗) , v (t∗)) ∈ W . By Theorem 4.1, we know that the weak solution is global.
Theorem 5.3 is proved.

With the same spirit, we also have the following result.

Theorem 5.4. Assume that E (0) = d. If (u0, v0) ∈ U and q = max {q1, q2} < p then the weak
solution of Problem (1)-(4) is blows up in finite time.
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6 High energy initial data

In this section, we investigate the conditions to ensure the existence of finite time blow-up
solutions to Problem (1)-(4) with E (0) > d with q1 = q2 = 2. We begin by introducing the
following lemma.

Lemma 6.1. Let δ ⩾ 0, T > 0 and let h be a Lipschitzian function over [0, T). Assume that h (0) ⩾ 0
and h′ (t) + δh (t) > 0 for a.e. t ∈ (0, T). Then h (t) > 0 for all t ∈ (0, T).

We may now prove the weak antidissipativity of the flow whenever (u (t) , v (t)) ∈ N−.

Lemma 6.2. Assume that (u0, v0) ∈ N−, (u1, v1) ∈
[
L2 (Ω)

]2 are such that

⟨u0, u1⟩+ ⟨v0, v1⟩ ⩾ 0. (82)

Then the map t 7−→ ∥u (t)∥2
2 + ∥v (t)∥2

2 is strictly increasing as long as (u (t) , v (t)) ∈ N−.

Proof of Lemma 6.2. Let H (t) = ∥u (t)∥2
2 + ∥v (t)∥2

2, and G (t) = H′ (t) = 2 ⟨u′ (t) , u (t)⟩ +
2 ⟨v′ (t) , v (t)⟩. By direct calculation, we obtain

G′ (t) = 2
〈
u′′ (t) , u (t)

〉
+ 2

〈
v′′ (t) , v (t)

〉
+ 2

∥∥u′ (t)
∥∥2

0 + 2
∥∥v′ (t)

∥∥2
0

= 2
∥∥u′ (t)

∥∥2
2 + 2

∥∥v′ (t)
∥∥2

2 − I (u (t) , v (t))− 1
2

G (t) .

This fact implies G′ (t) + 1
2 G (t) > 0 as long as (u (t) , v (t)) ∈ N−. Combine with Lemma 6.1

and definition of function H, we have H (t) is strictly increasing. Lemma 6.2 is proved.

We now prove the invariance set of N− with some suitable conditions.

Lemma 6.3. Suppose that (u0, v0, u1, v1) ∈
[
H2

0 (Ω)
]2 ×

[
L2 (Ω)

]2. Assume that the initial data
satisfy

2 ⟨u0, u1⟩+ 2 ⟨v0, v1⟩ − ∥u0∥2
2 − ∥v0∥2

2 >
2p

(p − 2)ℵ2
∗

E (0) , (83)

where ℵ∗ := inf
u∈H2

0 (Ω)\{0}

∥∆u∥2
∥u∥2

> 0. Then the solution (u, v) of the Problem (1)-(4) with E (0) > 0

belong to N−, provided by (u0, v0) ∈ N−.

Proof of Lemma 6.3. Arguing by contradiction, by the continuity of I in t, we suppose that there
exists a t∗ ∈ (0, T∞) such that I (u (t) , v (t)) < 0 for all t ∈ [0, t∗) and I (u (t∗) , v (t∗)) = 0. By
the Cauchy-Schwarz inequality, we have

2 ⟨u0, u1⟩+ 2 ⟨v0, v1⟩ ⩽ ∥u0∥2
2 + ∥v0∥2

2 + ∥u1∥2
2 + ∥v1∥2

2 .

Therefore, by Lemma 6.2, for any t ∈ [0, T∞), we have

H (t) = ∥u (t)∥2
2 + ∥v (t)∥2

2 > ∥u0∥2
2 + ∥v0∥2

2 ⩾ 2 ⟨u0, u1⟩+ 2 ⟨v0, v1⟩ − ∥u1∥2
2 − ∥v1∥2

2

>
2p

(p − 2)ℵ2
∗

E (0) . (84)

Moreover, from the continuity of solution with respect to t, we have

H (t∗) >
2p

(p − 2)ℵ2
∗

E (0) .
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From Lemma 3.13, we obtain

E (0) ⩾ E (t∗) =
1
2

(∥∥u′ (t∗)
∥∥2

2 +
∥∥v′ (t∗)

∥∥2
2

)
+

p − 2
2p

(
∥∆u (t∗)∥2

2 + ∥∆v (t∗)∥2
2

)
+

I (u (t∗) , v (t∗))
p

⩾
(p − 2)ℵ2

∗
2p

(
∥u (t∗)∥2

2 + ∥v (t∗)∥2
2

)
> E (0) . (85)

that is contraction. Therefore, (u (t) , v (t)) ∈ N− for all t ∈ [0, T∞). This completes the proof of
Lemma 6.3.

We now present the main blow-up theorem for the weak solution with arbitrary positive
initial energy.

Theorem 6.4. Suppose that (u0, v0, u1, v1) ∈
[
H2

0 (Ω)
]2 ×

[
L2 (Ω)

]2. Assume that the initial data
satisfy

2 ⟨u0, u1⟩+ 2 ⟨v0, v1⟩ − ∥u1∥2
2 − ∥v1∥2

2 >
2p

(p − 2)ℵ2
∗

E (0) . (86)

Then the solution (u, v) of the Problem (1)-(4) blows up in finite time provided by (u0, v0) ∈ N− and
E (0) > 0.

Further, we have the following estimate

T∞ ⩽
4
[

ζ +

√
ζ2 + β∗

(
∥u0∥2

2 + ∥v0∥2
2

)]
(p − 2) β∗

,

where

β∗ :=
(p − 2)ℵ2

∗
p

[
2 ⟨u0, u1⟩+ 2 ⟨v0, v1⟩ − ∥u1∥2

2 − ∥v1∥2
2 −

2p
(p − 2)ℵ2

∗
E (0)

]
> 0,

and
ζ :=

2
p − 2

(
∥u0∥2

2 + ∥v0∥2
2

)
− ⟨u0, u1⟩ − ⟨v0, v1⟩ .

Proof of Theorem 6.4. We use the same method as in Theorem 4.9. From Theorem 4.9, we just
need to prove that D (t) ⩾ 0. From (79), we have

D (t) ⩾ (p − 2)
(
∥∆u (t)∥2

2 + ∥∆v (t)∥2
2

)
− 2pE (0)− pβ

⩾ (p − 2)ℵ2
∗

(
∥u (t)∥2

2 + ∥v (t)∥2
2

)
− 2pE (0)− pβ

⩾ (p − 2)ℵ2
∗

[
2 ⟨u0, u1⟩+ 2 ⟨v0, v1⟩ − ∥u1∥2

2 − ∥v1∥2
2 −

2p
(p − 2)ℵ2

∗
E (0)

]
− pβ

= p (β∗ − β) .

Choose β ∈ (0, β∗], we have D (t) ⩾ 0. With same calculation as in Theorem 4.9, we can easily
obtain the rest results in our theorem. Theorem 6.4 is proved.
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